已知函數(shù)f(x)=
log
1
2
x
x>0
kx-2x≤0
,若k<0,則函數(shù)y=|f(x)|-1的零點個數(shù)是( 。
A、1B、4C、2D、3
考點:函數(shù)零點的判定定理
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=|f(x)|-1的零點個數(shù)即y=|f(x)|與y=1的交點的個數(shù),作圖求解.
解答: 解:函數(shù)y=|f(x)|-1的零點個數(shù)即y=|f(x)|與y=1的交點的個數(shù),
作y=|f(x)|與y=1的圖象如下,

有4個交點,
故選B.
點評:本題考查了函數(shù)的零點與函數(shù)圖象的交點的關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求以直線x-y+1=0和x+y-1=0的交點為圓心、半徑為
3
的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與x軸的非負(fù)半軸重合.若曲線C1的方程為ρsin(θ-
π
6
)+2
3
=0,曲線C2的參數(shù)方程為
x=cosθ
y=sinθ

(Ⅰ)將C1的方程化為直角坐標(biāo)方程;
(Ⅱ)若點Q為C2上的動點,P為C1上的動點,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2,b=4,C=60°.
(Ⅰ)求△ABC的面積;
(Ⅱ)求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且A,B,C成等差數(shù)列,a+c=2,則b的取值范圍是( 。
A、[1,2)
B、(0,2]
C、[1,
3
]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x-3-x
3x+3-x
,
(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ax-1+2(a>0,且a≠1)的圖象恒過點的坐標(biāo)為( 。
A、(2,2)
B、(2,4)
C、(1,2)
D、(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
x+y≤8,x≥0
2y-x≤4,y≥0
且z=5y-x的最大值為a,最小值為b,a-b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-x+1
x-1
(x≥2),g(x)=ax
(a>1,x≥2).
①若?x0∈[2,+∞),使f(x0)=m成立,則實數(shù)m的取值范圍為
 

②若?x1∈[2,+∞),?x2∈[2,+∞)使得f(x1)=g(x2),則實數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案