【題目】在平面直角坐標系xOy中,已知定點,點A在x軸的非正半軸上運動,點B在y軸上運動,滿足,A關(guān)于點B的對稱點為M,設(shè)點M的軌跡為曲線C.
(1)求C的方程;
(2)已知點,動直線與C相交于P,Q兩點,求過G,P,Q三點的圓在直線上截得的弦長的最小值.
【答案】(1);(2).
【解析】
(1)根據(jù)點A在x軸的非正半軸上運動,點B在y軸上運動,設(shè),再由 , ,得到a,b的關(guān)系式,然后由A關(guān)于點B的對稱點為M,得到,利用代入法化簡求解.
(2)由拋物線與直線相交,設(shè),根據(jù)關(guān)于軸對稱,得到過G,P,Q三點的圓的圓心在x軸上,設(shè)圓心為,由,運用兩點間的距離公式求得圓的方程,令,得到圓E在直線上截得的弦長,再結(jié)合基本不等式求最小值.
(1)因為點A在x軸的非正半軸上運動,點B在y軸上運動,
所以設(shè),
因為 , ,
所以,
因為A關(guān)于點B的對稱點為M,
所以 ,
即 ,
代入式得,
所以曲線C的方程是.
(2)由(1)知拋物線的方程為,
直線與拋物線方程聯(lián)立解得,,
設(shè),
因為關(guān)于軸對稱,所以過G,P,Q三點的圓的圓心在x軸上,
設(shè)圓心為,
所以,即,
解得,
所以圓E的方程為,
令,的,
所以圓E在直線上截得的弦長為,
因為,
所以,
,
當(dāng)且僅當(dāng),即時,取等號,
所以當(dāng)時,圓E在直線上截得的弦長的最小值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項均為正數(shù)的數(shù)列的前n項和為,已知,且,對一切都成立.
(1)當(dāng)時,證明數(shù)列是常數(shù)列,并求數(shù)列的通項公式;
(2)是否存在實數(shù),使數(shù)列是等差數(shù)列?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,為坐標原點,過點的直線與交于、兩點.
(1)若直線與圓相切,求直線的方程;
(2)若直線與軸的交點為,且,,試探究:是否為定值.若為定值,求出該定值,若不為定值,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系,.以坐標原點為極點,軸正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,點為上的動點,為的中點.
(1)請求出點軌跡的直角坐標方程;
(2)設(shè)點的極坐標為若直線經(jīng)過點且與曲線交于點,弦的中點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+1的圖象與函數(shù)g(x)=3cosπx的圖象所有交點的橫坐標之和等于( )
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正六棱錐中,底面邊長和側(cè)棱分別是2和4,,分別是和的中點,給出下面三個判斷:(1)和所成的角的余弦值為;(2)和底面所成的角是;(3)平面平面;其中判斷正確的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為.
(1)設(shè)橢圓的左右焦點分別為、,點在橢圓上運動,求的值;
(2)設(shè)直線和圓相切,和橢圓交于、兩點,為原點,線段、分別和圓交于、兩點,設(shè)、的面積分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱粽子,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期的楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為2的正三角形組成的,將它沿虛線對折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,右頂點,上頂點為B,左右焦點分別為,且,過點A作斜率為的直線l交橢圓于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)設(shè)P為的中點,是否存在定點Q,對于任意的都有?若存在,求出點Q;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com