在平面直角坐標(biāo)系xoy中,
x=1-3t
y=4-4t
(t為參數(shù)),則直線(xiàn)傾斜角的余弦值為
 
考點(diǎn):參數(shù)方程化成普通方程
專(zhuān)題:坐標(biāo)系和參數(shù)方程
分析:首先,根據(jù)直線(xiàn)的參數(shù)方程,化成普通方程,然后,求解其斜率,利用三角函數(shù)知識(shí),求解其余弦值.
解答:解:∵
x=1-3t
y=4-4t
(t為參數(shù)),
消去t,并整理,得
4x-3y+8=0.
∴對(duì)應(yīng)的直線(xiàn)斜率為
4
3
,
設(shè)直線(xiàn)的傾斜角為α,
∴tanα=
4
3
,
結(jié)合sin2α+cos2α=1,
得cosα=
3
5

故答案為:
3
5
點(diǎn)評(píng):本題重點(diǎn)考查了參數(shù)方程和普通方程的轉(zhuǎn)化、直線(xiàn)的斜率、三角函數(shù)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

參數(shù)方程
x=2+sin2θ
y=-1+cos2θ
(θ為參數(shù))化為普通方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線(xiàn)
x=1+t2
y=t-1
(t為參數(shù))與x軸交點(diǎn)的直角坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)矩陣A=
1
3
0
-1
,B=(
1
0
 
-2
1
),則(AB)-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C1的極坐標(biāo)方程為ρsin(θ+
π
6
)+m=0,曲線(xiàn)C2的參數(shù)方程為
x=-cosα
y=sinα
(0<α<π),若曲線(xiàn)C1與C2有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)f(x)=x+lnx的零點(diǎn)所在的區(qū)間為( )

A.(-1,0) B.(,1) C.(1,2) D.(1,e)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市高三10月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

如果函數(shù)y=|x|﹣2的圖象與曲線(xiàn)C:x2+y2=λ恰好有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)λ的取值范圍是( )

A.{2}∪(4,+∞) B.(2,+∞)

C.{2,4} D.(4,+∞)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

直線(xiàn)的位置關(guān)系為_(kāi)_____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都實(shí)驗(yàn)外國(guó)語(yǔ)高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

某四面體的三視圖如圖所示,正視圖、側(cè)視圖、俯視圖都是邊長(zhǎng)為1的正方形,則此四面體的外接球的表面積為( )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案