【題目】在平面直角坐標(biāo)系xOy中,設(shè)點(diǎn)集,.從集合Mn中任取兩個不同的點(diǎn),用隨機(jī)變量X表示它們之間的距離.

1)當(dāng)n=1時,求X的概率分布;

2)對給定的正整數(shù)nn≥3),求概率PXn)(用n表示).

【答案】(1)見解析;

(2)見解析.

【解析】

(1)由題意首先確定X可能的取值,然后利用古典概型計算公式求得相應(yīng)的概率值即可確定分布列;

(2)將原問題轉(zhuǎn)化為對立事件的問題求解的值,據(jù)此分類討論①.,②.,③.,④.四種情況確定滿足的所有可能的取值,然后求解相應(yīng)的概率值即可確定的值.

1)當(dāng)時,的所有可能取值是

的概率分布為,

2)設(shè)是從中取出的兩個點(diǎn).

因?yàn)?/span>,所以僅需考慮的情況.

①若,則,不存在的取法;

②若,則,所以當(dāng)且僅當(dāng),此時,有2種取法;

③若,則,因?yàn)楫?dāng)時,,所以當(dāng)且僅當(dāng),此時,有2種取法;

④若,則,所以當(dāng)且僅當(dāng),此時,有2種取法.

綜上,當(dāng)時,的所有可能取值是,且

因此,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

甲、乙兩個籃球運(yùn)動員互不影響地在同一位置投球,命中率分別為,且乙投球2次均未命中的概率為.

)求乙投球的命中率

)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )

A.28B.56C.84D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.

)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;

)已知f(x)x=1處取得極大值.求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩人玩摸球游戲,每兩局為一輪,每局游戲的規(guī)則如下:甲,乙兩人均從裝有4只紅球、1只黑球的袋中輪流不放回摸取1只球,摸到黑球的人獲勝,并結(jié)束該局.

(1)若在一局中甲先摸,求甲在該局獲勝的概率;

(2)若在一輪游戲中約定:第一局甲先摸,第二局乙先摸,每一局先摸并獲勝的人得1分,后摸井獲勝的人得2分,未獲勝的人得0分,求此輪游戲中甲得分X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某公司舉行的年終慶典活動中,主持人利用隨機(jī)抽獎軟件進(jìn)行抽獎:由電腦隨機(jī)生成一張如圖所示的33表格,其中1格設(shè)獎300元,4格各設(shè)獎200元,其余4格各設(shè)獎100元,點(diǎn)擊某一格即顯示相應(yīng)金額.某人在一張表中隨機(jī)不重復(fù)地點(diǎn)擊3格,記中獎的總金額為X元.

1)求概率;

2)求的概率分布及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)解關(guān)于的不等式

2)若對于任意,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Ox2+y23上的一動點(diǎn)Mx軸上的投影為N,點(diǎn)P滿足

1)求動點(diǎn)P的軌跡C的方程;

2)若直線l與圓O相切,且交曲線C于點(diǎn)A,B,試求|AB|的最大值.

查看答案和解析>>

同步練習(xí)冊答案