在四棱錐V-ABCD中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ) 證明:AB⊥平面VAD;
(Ⅱ)求二面角A-VD-B的余弦值.
考點(diǎn):二面角的平面角及求法,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由平面VAD⊥平面ABCD,平面VAD∩平面ABCD=AD,又AB在平面ABCD內(nèi),AD⊥AB,即可證明AB⊥平面VAD.
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.依題意設(shè)AB=AD=AV=1,可求BV=BD=
2
.設(shè)VD的中點(diǎn)為E,連結(jié)AE、BE,則AE⊥VD,BE⊥VD,可得∠AEB是面VDA與面VDB所成二面角的平面角.又AE=
3
2
,BE=
7
2
,從而可求cos∠AEB的值.
解答: 解:(Ⅰ)因?yàn)槠矫鎂AD⊥平面ABCD,平面VAD∩平面ABCD=AD,
又AB在平面ABCD內(nèi),AD⊥AB,
所以AB⊥平面VAD.…(3分)
(Ⅱ)由(Ⅰ)知AD⊥AB,AB⊥AV.依題意設(shè)AB=AD=AV=1,
所以BV=BD=
2
.…(6分)
設(shè)VD的中點(diǎn)為E,連結(jié)AE、BE,則AE⊥VD,BE⊥VD,
所以∠AEB是面VDA與面VDB所成二面角的平面角.…(9分)
又AE=
3
2
,BE=
7
2
,
所以cos∠AEB=
3
4
+
7
4
-1
3
2
×
7
2
=
21
7
.…(12分)
點(diǎn)評(píng):本題主要考查了直線與平面垂直的判定,二面角的余弦值的求法,正確作出并證明二面角的平面角是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知平面內(nèi)三點(diǎn)A(3,0)、B(0,3)、C(cosα,sinα),若
AC
BC
=-1,求
2sin2α+sin2α
1+tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
4b2
+
y2
b2
=1(b>0),拋物線C2:x2=4(y-b).過點(diǎn)F(0,b+1)作x軸的平行線,與拋物線C2在第一象限的交點(diǎn)為G,且該拋物線在點(diǎn)G處的切線經(jīng)過坐標(biāo)原點(diǎn)O.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)直線l:y=kx與橢圓C1相交于兩點(diǎn)C、D兩點(diǎn),其中點(diǎn)C在第一象限,點(diǎn)A為橢圓C1的右頂點(diǎn),求四邊形ACFD面積的最大值及此時(shí)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一幾何體的三視圖如圖所示,若主視圖和左視圖都是等腰直角三角形,直角邊長(zhǎng)為1,則該幾何體外接球的表面積為( 。
A、4πB、3πC、2πD、π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log3x,
(1)求f(x)的解析式;
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=-4x2+8x-3
(1)求當(dāng)x<0時(shí),f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,
(3)求y=f(x)的最大值,并指出其單調(diào)區(qū)間.(不必證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在坐標(biāo)原點(diǎn),且與直線l1:x-y-2
2
=0相切,點(diǎn)R(1,-1).
(Ⅰ)過點(diǎn)G(1,3)作兩條與圓C相切的直線,切點(diǎn)分別為M,N,求直線MN的方程;
(Ⅱ)若與直線l1垂直的直線l與圓C交于不同的兩點(diǎn)P,Q,且∠PRQ為鈍角,求直線l的縱截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=6,且an-an-1=
an-1
n
+n+1
(n∈N*,n≥2),數(shù)列{
1
an
}的前n項(xiàng)和為sn,則S10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足
x-y-2≤0
x+2y-5≥0
y-2≤0
求:
(1)z=x2+y2的取值范圍;
(2)z=
x+y
x
的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案