【題目】為了解籃球愛好者小李的投籃命中率與打籃球時間之間的關系,下表記錄了小李某月1號到5號每天打籃球時間x(單位:小時)與當天投籃命中率y之間的關系:

時間x

1

2

3

4

5

命中率y

0.4

0.5

0.6

0.6

0.4

小李這5天的平均投籃命中率為    ;用線性回歸分析的方法,預測小李該月6號打6小時籃球的投籃命中率為    .

【答案】0.5 0.53

【解析】平均命中率=×(0.4+0.5+0.6+0.6+0.4)=0.5,=3,

(xi-)(yi-)=(-2)×(-0.1)+(-1)×0+0×0.1+1×0.1+2×(-0.1)=0.1,

(xi-)2=(-2)2+(-1)2+02+12+22=10,于是=0.01,=-=0.47,∴=0.01x+0.47,x=6,=0.53.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),(a>0a1),h(x)=f(x)-g(x).

(1)求函數(shù)h(x)的定義域;

(2)判斷h(x)的奇偶性,并說明理由;

(3)f(2)=1,求使h(x)>0成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O為底面中心, A1O⊥平面ABCD,.

1)證明: A1BD // 平面CD1B1;

2)求三棱柱ABDA1B1D1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直三棱柱,,則異面直線所成角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為橢圓的左、右焦點,在橢圓上移動時, 的內(nèi)心的軌跡方程為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為4,過點的直線交橢圓于兩點, 中點連接并延長交橢圓于點,記直線的斜率為分別為,.

(Ⅰ)求橢圓方程;

(Ⅱ)當為直角時的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|1<log2x<3,x∈N*},B={4,5,6,7,8}.

(1)從A∪B中取出3個不同的元素組成三位數(shù),則可以組成多少個?

(2)從集合A中取出1個元素,從集合B中取出3個元素,可以組成多少個無重復數(shù)字且比4000大的自然數(shù)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城鎮(zhèn)社區(qū)為了豐富轄區(qū)內(nèi)廣大居民的業(yè)余文化生活,創(chuàng)建了社區(qū)“文化丹青”大型活動場所,配備了各種文化娛樂活動所需要的設施,讓廣大居民健康生活、積極向上,社區(qū)最近四年內(nèi)在“文化丹青”上的投資金額統(tǒng)計數(shù)據(jù)如表: (為了便于計算,把2015年簡記為5,其余以此類推)

年份(年)

5

6

7

8

投資金額(萬元)

15

17

21

27

(Ⅰ)利用所給數(shù)據(jù),求出投資金額與年份之間的回歸直線方程;

(Ⅱ) 預測該社區(qū)在2019年在“文化丹青”上的投資金額.

附:對于一組數(shù)據(jù), 其回歸直線的斜率和截距的最小二乘估計分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓經(jīng)過點A(-2,0),B(0,2),且圓心在直線y=x上,又直線l:y=kx+1與圓相交于P、Q兩點.

(1)求圓的方程;

(2)若,求實數(shù)k的值;

(3)過點作動直線交圓兩點.試問:在以為直徑的所有圓中,是否存在這樣的圓,使得圓經(jīng)過點?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案