【題目】已知為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上移動時(shí), 的內(nèi)心的軌跡方程為__________.
【答案】
【解析】考查更為一般的問題:設(shè)P為橢圓C: 上的動點(diǎn), 為橢圓的兩個(gè)焦點(diǎn), 為△PF1F2的內(nèi)心,求點(diǎn)I的軌跡方程.
解法一:如圖,設(shè)內(nèi)切圓I與F1F2的切點(diǎn)為H,半徑為r,且F1H=y,F2H=z,PF1=x+y,PF2=x+z, ,則.
直線IF1與IF2的斜率之積: ,
而根據(jù)海倫公式,有△PF1F2的面積為
因此有.
再根據(jù)橢圓的斜率積定義,可得I點(diǎn)的軌跡是以F1F2為長軸,
離心率e滿足的橢圓,
其標(biāo)準(zhǔn)方程為.
解法二:令,則.三角形PF1F2的面積:
,
其中r為內(nèi)切圓的半徑,解得.
另一方面,由內(nèi)切圓的性質(zhì)及焦半徑公式得:
從而有.消去θ得到點(diǎn)I的軌跡方程為:
.
本題中: ,代入上式可得軌跡方程為: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在框圖中,設(shè)x=2,并在輸入框中輸入n=4;ai=i(i=0,1,2,3,4).則此程序執(zhí)行后輸出的S值為( )
A.26
B.49
C.52
D.98
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中, , , ,四邊形為矩形, ,平面平面.
(Ⅰ)求證: 平面;
(Ⅱ)求平面與平面所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(n∈N*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{a2nbn}的前n項(xiàng)和(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCP中,CP∥AB,CP⊥CB,,CP=2,D是CP的中點(diǎn),將△PAD沿AD折起,使得PD⊥面ABCD.
(1)求證:平面PAD⊥平面PCD;
(2)若E是PC的中點(diǎn),求三棱錐D﹣PEB的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解籃球愛好者小李的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小李某月1號到5號每天打籃球時(shí)間x(單位:小時(shí))與當(dāng)天投籃命中率y之間的關(guān)系:
時(shí)間x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
小李這5天的平均投籃命中率為 ;用線性回歸分析的方法,預(yù)測小李該月6號打6小時(shí)籃球的投籃命中率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓的離心率為,左右焦點(diǎn)分別為和,以點(diǎn)為圓心,以為半徑的圓與以點(diǎn)為圓心,以為半徑的圓相交,且交點(diǎn)在橢圓上.
()求橢圓的方程.
()設(shè)橢圓,為橢圓上任意一點(diǎn),過點(diǎn)的直線交橢圓于、兩點(diǎn),射線交橢圓于點(diǎn).
①求的值.
②求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一盒中裝有9張各寫有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.
(1)求所取3張卡片上的數(shù)字完全相同的概率;
(2)X表示所取3張卡片上的數(shù)字的中位數(shù),求X的分布列與數(shù)學(xué)期望.(注:若三個(gè)數(shù)字a,b,c滿足a≤b≤c,則稱b為這三個(gè)數(shù)的中位數(shù).)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com