3.極坐標(biāo)系中,O為極點(diǎn),A(2,$\frac{π}{3}$),B(5,$\frac{5π}{6}$),則S△AOB=(  )
A.2B.3C.4D.5

分析 由已知得∴∠AOB=$\frac{5π}{6}-\frac{π}{3}$=$\frac{π}{2}$,由此利用S△AOB=$\frac{1}{2}×|OA|×|OB|×sin∠AOB$,能求出結(jié)果.

解答 解:∵極坐標(biāo)系中,O為極點(diǎn),A(2,$\frac{π}{3}$),B(5,$\frac{5π}{6}$),
∴∠AOB=$\frac{5π}{6}-\frac{π}{3}$=$\frac{π}{2}$,
∴S△AOB=$\frac{1}{2}$×|OA|×|OB|×sin∠AOB=$\frac{1}{2}$×2×5×sin$\frac{π}{2}$=5.
故選:D.

點(diǎn)評(píng) 本題考查三角形面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意極坐標(biāo)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知三條直線y=2x,x+y=3,mx+ny+5=0交于一點(diǎn),則坐標(biāo)(m,n)可能是( 。
A.(-1,3)B.(3,-1)C.(-3,1)D.(-3,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知:A(2,5),B(6,-1),C(9,1),求證:AB⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知拋物線y2=4x,直線l經(jīng)過(guò)點(diǎn)(0,2),且與拋物線交于兩點(diǎn),則直線l的斜率k的取值范圍k<$\frac{1}{2}$,且k≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.?dāng)?shù)列{19-2n}的前n項(xiàng)和Sn最大時(shí),n等于( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知中心為坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過(guò)點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn);
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點(diǎn),且直線OA與l的距離等于2?若存在求出直線方程;若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知a,b∈R,則“$\frac{1}{a}>\frac{1}$”是“2a<2b”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=3x2+1,則f[f(1)]的值等于( 。
A.25B.36C.42D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$f(x)=acos({\frac{π}{2}x+α})+bsin({\frac{π}{2}x+β})+3$,若f(2014)=4,則f(2016)的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案