某設(shè)備的使用年限與所支出的維修費(fèi)用的統(tǒng)計(jì)數(shù)據(jù)如下表:
使用年限x(單位:年)23456
維修費(fèi)用y(單位:萬元)1.54.55.56.57.0
根據(jù)上表可得回歸直線方程為:
y
=1.3x+
a
,據(jù)此模型預(yù)測(cè),若使用年限為8年,估計(jì)維修費(fèi)用約為(  )
A、10.2萬元
B、10.6萬元
C、11.2萬元
D、11.6萬元
考點(diǎn):回歸分析的初步應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)所給的數(shù)據(jù)求出這組數(shù)據(jù)的橫標(biāo)和縱標(biāo)的平均數(shù),即這組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)樣本中心點(diǎn)在線性回歸直線上,把樣本中心點(diǎn)代入求出a的值,寫出線性回歸方程,代入x的值,預(yù)報(bào)出結(jié)果.
解答: 解:∵由表格可知
.
x
=4,
.
y
=5,
∴這組數(shù)據(jù)的樣本中心點(diǎn)是(4,5),
根據(jù)樣本中心點(diǎn)在線性回歸直線上,
∴5=a+1.3×4,
∴a=-0.2,
∴這組數(shù)據(jù)對(duì)應(yīng)的線性回歸方程是y=1.3x-0.2,
∵x=8,
∴y=1.3×8-0.2=10.2,
故選:A.
點(diǎn)評(píng):本題考查線性回歸方程,考查樣本中心點(diǎn),做本題時(shí)要注意本題把利用最小二乘法來求線性回歸方程的系數(shù)的過程省掉,只要求a的值,這樣使得題目簡化,注意運(yùn)算不要出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
3
+
y2
4
=1,P為橢圓上一點(diǎn),則點(diǎn)P到直線
3
x-y-8=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1+i,z2=x+2i(x∈R),若z1z2為純虛數(shù),則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M和N是兩個(gè)集合,定義集合M-N=|x|x∈M,且x∉N|,如果M=|x|log2x<1|,N=|x|x-2<1|,那么M-N=( 。
A、{x|0<x<1}
B、{x|0<x≤1}
C、{x|1≤x<2}
D、{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5人并排一起照相,甲恰好坐在中間的概率為( 。
A、
1
20
B、
1
10
C、
2
3
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則化簡復(fù)數(shù)
-1+i
1+i
的結(jié)果為( 。
A、iB、-1C、-iD、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log
1
2
(x-3)
的定義域是( 。
A、(-∞,4)
B、(-∞,4]
C、(3,4]
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列6個(gè)命題中正確命題個(gè)數(shù)是( 。
(1)第一象限角是銳角
(2)y=sin(
π
4
-2x)的單調(diào)增區(qū)間是(kπ+
3
8
π,kπ+
7
8
π),k∈Z
(3)角α終邊經(jīng)過點(diǎn)(a,a)(a≠0)時(shí),sinα+cosα=
2

(4)若y=
1
2
sin(ωx)的最小正周期為4π,則ω=
1
2

(5)若cos(α+β)=-1,則sin(2α+β)+sinβ=0
(6)若定義在R上函數(shù)f(x)滿足f(x+1)=-f(x),則y=f(x)是周期函數(shù).
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中不正確的是( 。
A、點(diǎn)斜式y(tǒng)-y1=k(x-x1)適用于不垂直于x軸的任何直線
B、斜截式y(tǒng)=kx+b適用于不垂直于x軸的任何直線
C、兩點(diǎn)式
y-y1
y2-y1
=
x-x1
x2-x1
用于不垂直于x軸和y軸的任何直線
D、截距式
x
a
+
y
b
=1適用于不過原點(diǎn)的任何直線

查看答案和解析>>

同步練習(xí)冊(cè)答案