17.已知函數(shù)f(x)=cosx+e-x+x2016,令f1(x)=f′(x),f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1=fn′(x),則f2017(x)=( 。
A.-sinx+e-xB.cosx-e-xC.-sinx-e-xD.-cosx+e-x

分析 利用基本初等函數(shù):三角函數(shù),指數(shù)函數(shù),冪函數(shù)的導(dǎo)數(shù)運算法則求出各階導(dǎo)數(shù),找規(guī)律.

解答 解:f1(x)=f′(x)=-sinx-e-x+2016x2015
f2(x)=f′1(x)=-cosx+e-x+2016×2015×x2014
f3(x)=f′2(x)=sinx-e-x+2016×2015×2014x2013
f4(x)=f′3(x)=cosx+e-x+2016×2015×2014×2013x2012

∴f2016(x)=f′2015(x)=cosx+e-x+2016×2015×2014×2013×…×1
∴f2017(x)=-sinx-e-x,
故選C

點評 本題考查基本初等函數(shù)的導(dǎo)數(shù)公式、考查通過不完全歸納找規(guī)律的推理方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.用反證法證明“凸四邊形的四個內(nèi)角中至少有一個不小于90°”時,首先要作出的假設(shè)是( 。
A.四個內(nèi)角都大于90°B.四個內(nèi)角中有一個大于90°
C.四個內(nèi)角都小于90°D.四個內(nèi)角中有一個小于90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在△ABC中,BC邊上的中線AD長為3,且cosB=$\frac{{\sqrt{10}}}{8}$,cos∠ADC=-$\frac{1}{4}$.
(1)求sin∠BAD的值;
(2)求DC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.橢圓$\frac{{x}^{2}}{a+8}$+$\frac{{y}^{2}}{9}$=1的離心率e=$\frac{1}{2}$,則a的值為(  )
A.10或-$\frac{7}{2}$B.4或-$\frac{5}{4}$C.4或-$\frac{7}{2}$D.10或-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)Sn為等差數(shù)列{an}的前n項的和,a1=-2016,$\frac{{{S_{2007}}}}{2007}-\frac{{{S_{2005}}}}{2005}$=2,則S2016的值為( 。
A.-2015B.-2016C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.不等式2x2-3x+1≥0的解集是(  )
A.[$\frac{1}{2}$,1]B.(-∞,$\frac{1}{2}$]∪[1,+∞)C.[-$\frac{1}{2}$,1]D.(-∞,-$\frac{1}{2}$)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知直線l:x+2y-3=0,直線l1過點(2,3).
(1)若l1⊥l,求直線l1的方程;
(2)若l1∥l,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若不等式ax2-ax+1>0的解集為R,則a的取值區(qū)間為( 。
A.(-4,0]B.(-4,4)C.[0,4)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知方程x2-3x+1=0的兩根為x1和x2,求(x1-3)(x2-3)的值.

查看答案和解析>>

同步練習(xí)冊答案