設(shè)a∈R,則“a=1”是直線“l(fā)1:ax+2y-1=0與直線l2:(a+1)x-y+4=0垂直”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)直線垂直的等價條件,結(jié)合充分條件和必要條件的定義進(jìn)行判斷.
解答: 解:直線l1:ax+2y-1=0的斜率k1=-
a
2
,直線l2:(a+1)x-y+4=0的斜率k2=a+1,
若兩直線垂直則k1k2=-
a
2
(a+1)=-1,
即a2+a-2=0,解得a=1或a=-2,
故“a=1”是直線“l(fā)1:ax+2y-1=0與直線l2:(a+1)x-y+4=0垂直”的充分不必要條件,
故選:A
點(diǎn)評:本題主要考查充分條件和必要條件的判斷,根據(jù)直線垂直的等價條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
4
5
,cos(α+β)=-
3
5
,α、β都是第一象限的角,sinβ的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某幾何體的三視圖,則該幾何體的體積為(  )
A、256+128π
B、256+64π
C、64+64π
D、64+32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=6cos2
ωx
2
+
3
ωx
2
+
3
sinωx-3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a=2”是“直線(a2-a)x+y-1=0和2x+y+1=0互相平行”的(  )
A、充要條件
B、必要不充分條件
C、充分不必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
-i
1-i
=(  )
A、-
1
2
-
1
2
i
B、-
1
2
+
1
2
i
C、
1
2
+
1
2
i
D、
1
2
-
1
2
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,則正確表示集合M={x∈R|(x-1)(x-2)>0}和N={x∈R|x2+x<0}的關(guān)系的韋恩(Venn)圖是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=
1+2i
3-i
,i是虛數(shù)單位,則復(fù)數(shù)虛部是(  )
A、
1
10
i
B、
1
10
C、
7
10
D、
7
10
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|1-
x-1
3
|≤2 命題q:x2-2x+1-m2≤0(m>0),且p是q的必要而不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案