10.tan$\frac{13π}{3}$的值是(  )
A.-$\frac{\sqrt{3}}{3}$B.-$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

分析 利用任意角的三角函數(shù)的定義,求得要求式子的值.

解答 解:tan$\frac{13π}{3}$=tan(4π+$\frac{π}{3}$)=tan$\frac{π}{3}$=$\sqrt{3}$,
故選:D.

點(diǎn)評 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知集合A={(x,y)|y=3|x-1|+1},B={(x,y)|y=k},若集合A∩B只有一個真子集,則實(shí)數(shù)k的取值集合是{2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓O:x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=45°時,求AB的長;
(2)當(dāng)弦AB被點(diǎn)P0平分時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知集合A={x|1-m≤x≤2m+1},B=$\left\{{x|\frac{1}{9}≤{3^x}≤81}\right\}$.
(1)當(dāng)m=2時,求A∩B,A∪B;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=x3-($\frac{1}{2}$)x,若f(m-1)<f(2),則實(shí)數(shù)m的取值范圍是(-∞,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(sinx,$\sqrt{3}$),$\overrightarrow$=(2cosx,$\sqrt{3}$).設(shè)函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,
(1)求f(x)的最大值
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)計算:(-3)0-${0^{\frac{1}{2}}}$+(-2)-2-${16^{-\frac{1}{4}}}$;
(2)計算:log49-log212+${10^{-lg\frac{5}{2}}}$.
(3)計算:$2{7}^{\frac{2}{3}}$-2log23×log2${\;}^{\frac{1}{8}}$+log23×log34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.299與621的最大公約數(shù)為23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)是(0,+∞)上的單調(diào)增函數(shù),當(dāng)n∈N+時,f(n)∈N+,且f[f(n)]=3n,則f(1)的值為2.

查看答案和解析>>

同步練習(xí)冊答案