14.如圖所示的程序框圖的算符源于我國古代的“中國剩余定理”,用N≡n(modm)表示正整數(shù)N除以正整數(shù)m后的余數(shù)為n,例如:7≡1(mod3),執(zhí)行該程序框圖,則輸出的n的值為( 。
A.19B.20C.21D.22

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量i的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:模擬程序的運行,可得
n=15,
n=16,不滿足條件“n=2(mod 3)“,不滿足條件“n=2(mod 5)“,
n=17,滿足條件“n=2(mod 3)“,
n=18,不滿足條件“n=2(mod 3)“,不滿足條件“n=2(mod 5)“
n=19,不滿足條件“n=2(mod 3)“,不滿足條件“n=2(mod 5)“
n=20,滿足條件“n=2(mod 3)“,
n=21,不滿足條件“n=2(mod 3)“,不滿足條件“n=2(mod 5)“
n=22,不滿足條件“n=2(mod 3)“,滿足條件“n=2(mod 5)“
退出循環(huán),輸出n的值為22.
故選:D.

點評 本題考查的知識點是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(2,-1,3),$\overrightarrow$=(-4,2,x),使$\overrightarrow{a}$⊥$\overrightarrow$ 成立的x與使$\overrightarrow{a}$∥$\overrightarrow$成立的x分別為( 。
A.$\frac{10}{3}$,-6B.-$\frac{10}{3}$,6C.-6,$\frac{10}{3}$D.6,-$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知遞增數(shù)列{an}滿足a1=1,|an+1-an|=pn,n∈N*.且a1,2a2,3a3成等差數(shù)列,則實數(shù)P的值為( 。
A.0B.$\frac{1}{3}$C.$\frac{1}{3}$或0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若z=4+3i,則$\frac{\overline z}{|z|}$=$\frac{4}{5}$-$\frac{3}{5}$i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.以下四個命題中,真命題是( 。
A.?x∈(0,π),sinx=tanx
B.條件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,條件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$,則p是q的必要不充分條件
C.“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
D.?θ∈R,函數(shù)f(x)=sin(2x+θ)都不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在數(shù)列{an}中,a1=1,an=1+$\frac{1}{{a}_{n-1}}$(n≥2),則a5=$\frac{8}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.四面體的頂點和各棱中點共10個點,則由這10點構(gòu)成的直線中,有423對異面直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$\overrightarrow a=(3,2),\overrightarrow b=(0,-1)$,則$2\overrightarrow a-3\overrightarrow b$的坐標(biāo)是( 。
A.(6,-5)B.(6,7)C.(6,1)D.(6,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體的各面中,最長棱的長度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.6D.$4\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案