【題目】數(shù)學家歐拉在年提出定理:三角形的外心、重心、垂心依次位于同一直線上,且重心到外心的距離是重心到垂心距離的一半,這條直線后人稱之為三角形的歐拉線.已知的頂點、,若其歐拉線方程為,則頂點的坐標是(

參考公式:若的頂點、、的坐標分別是、、,則該的重心的坐標為.

A.B.,

C.,D.

【答案】A

【解析】

設點的坐標為,由重心的坐標公式求得該三角形的重心坐標,代入歐拉線方程得一方程,求出線段的垂直平分線方程,和歐拉線方程聯(lián)立求出三角形的外心,由外心到兩個頂點的距離相等得出另一方程,兩方程聯(lián)立可求出點的坐標.

設點的坐標為,由重心的坐標公式可知的重心為,

代入歐拉線方程得,整理得,①

線段的中點坐標為,直線的斜率為,

線段的垂直平分線方程為,即,

聯(lián)立,解得,所以,的外心為,

,整理得,②

聯(lián)立①②得,

,時,點、重合,舍去,因此,頂點的坐標是.

故答案為:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲量巨大,已發(fā)現(xiàn)礦種76種,探明儲量39種,其中釩、鈦資源儲量分別占全國的63%93%,占全球的11%35%,因此其素有釩鈦之都的美稱.攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標值yy值越大產(chǎn)品的性能越好)與這種新合金材料的含量x(單位:克)的關系為:當0≤x7時,yx的二次函數(shù);當x≥7時,.測得部分數(shù)據(jù)如表:

(1)求y關于x的函數(shù)關系式yfx);

(2)求該新合金材料的含量x為何值時產(chǎn)品的性能達到最佳.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從高二年級學生中隨機抽取100名學生,將他們某次考試的數(shù)學成績(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),

(1)求分數(shù)在[70,80)中的人數(shù);

(2)若用分層抽樣的方法從分數(shù)在[40,50)和[50,60)的學生中共抽取5 人,該5 人中成績在[40,50)的有幾人

(3)在(2)中抽取的5人中,隨機選取2 人,求分數(shù)在[40,50)和[50,60)各1 人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,分別為,的中點.

(1)求證:平面

(2)求證:平面平面

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】實數(shù)a,b滿足ab>0ab,由a、b、、按一定順序構成的數(shù)列(  )

A. 可能是等差數(shù)列,也可能是等比數(shù)列

B. 可能是等差數(shù)列,但不可能是等比數(shù)列

C. 不可能是等差數(shù)列,但可能是等比數(shù)列

D. 不可能是等差數(shù)列,也不可能是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,上一點,,且,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,且焦點為F,直線l與拋物線相交于A,B兩點.

⑴求拋物線C的方程,并求其準線方程;

為坐標原點.,證明直線l必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐,

,證明平面平面;

當四棱錐的體積為且二面角為鈍角時,求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若直線與曲線的交點的橫坐標為,且,求整數(shù)所有可能的值.

查看答案和解析>>

同步練習冊答案