【題目】已知某品牌手機(jī)公司生產(chǎn)某款手機(jī)的年固定成本為40萬美元,每生產(chǎn)1萬部還需另投入16萬美元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)x萬部并全部銷售完,每萬部的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤(rùn)f(x)(萬美元)關(guān)于年產(chǎn)量x(萬部)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬部時(shí),公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

【答案】
(1)解:利用利潤(rùn)等于收入減去成本,可得

當(dāng)0<x≤40時(shí),f(x)=xR(x)﹣(16x+40)=﹣6x2+384x﹣40;

當(dāng)x>40時(shí),f(x)=xR(x)﹣(16x+40)=﹣ ﹣16x+7960

∴f(x)= ;


(2)解:當(dāng)0<x≤40時(shí),f(x)=﹣6x2+384x﹣40=﹣6(x﹣32)2+6104,

∴x=32時(shí),f(x)max=f(32)=6104;

當(dāng)x>40時(shí),f(x)=xR(x)﹣(16x+40)=﹣ ﹣16x+7960≤﹣2 +7960,

當(dāng)且僅當(dāng) =16x,即x=60時(shí),f(x)max=f(60)=7768

∵7768>6103

∴x=60時(shí),f(x)的最大值為7768萬美元


【解析】(1)利用利潤(rùn)等于收入減去成本,可得分段函數(shù)解析式;(2)分段求出函數(shù)的最大值,比較可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=1﹣,求解:(1)f(x)的值域;(2)證明f(x)為R上的增函數(shù). .
(1)求f(x)的值域;
(2)證明f(x)為R上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為.

(1)的單調(diào)遞增區(qū)間;

(2)中,角的對(duì)邊分別是滿足,求函數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義集合A={x|2x≥1},B={y|y= },則A∩RB=(
A.(1,+∞)
B.[0,1]
C.[0,1)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},分別求適合下列條件的a的值.
(1)9∈(A∩B);
(2){9}=A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知g(x)=sin2x,將g(x)的圖象向左平移 個(gè)單位長(zhǎng)度,再將圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的 ,得到函數(shù)f(x)的圖象,則(
A.
B. ??
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ) 在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:

ωx+φ

0

π

x

f(x)=Asin(ωx+φ)

0

5

﹣5

0


(1)請(qǐng)將如表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移 個(gè)單位長(zhǎng)度,得到函數(shù)y=g(x)的圖象,求y=g(x)的圖象離原點(diǎn)O最近的對(duì)稱中心.
(3)求當(dāng) 時(shí),函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

已知函數(shù),函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若不等式上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅲ)若,求證:不等式: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)0<a<1,定義a1=1+a, , 求證:對(duì)任意n∈N , 有

查看答案和解析>>

同步練習(xí)冊(cè)答案