點(diǎn)P(-1,y)在
2
3
π的終邊上,則y=
 
考點(diǎn):任意角的三角函數(shù)的定義
專(zhuān)題:三角函數(shù)的求值
分析:利用任意角的三角函數(shù)的定義即可求得y的值.
解答: 解:∵點(diǎn)P(-1,y)在
2
3
π角的終邊上,
∴sin
2
3
π=
y
1+y2
=
3
2
,
y>0
y
1+y2
=
3
2
,解得y=
3

故答案為:
3
點(diǎn)評(píng):本題考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果sin(3π+θ)=
1
4
,求:
cos(π+θ)
cosθ[cos(π+θ)-1]
+
cos(θ-2π)
cos(θ+2π)cos(π+θ)+cos(-θ)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)滿足f(x)=f(x+4),且x∈(0,2]時(shí),f(x)=
3x
3x+1

(1)求f(x)在[-2,2]上的解析式;
(2)判斷f(x)在[0,2]上的單調(diào)性,并給予證明;
(3)當(dāng)λ為何值時(shí),關(guān)于方程f(x)=λ在[-2,2]上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=
x
+1.
(1)用定義證明:f(x)在(0,+∞)上為增函數(shù);
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)設(shè)函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)數(shù),若f(x)=2f′(x),則
sin2x-sin2x
cos2x
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果a>b,給出下列不等式:(1)
1
a
1
b
;(2)a3>b3;(3)a2+1>b2+1;(4)2a>2b.其中正確的是
 
.(把你認(rèn)為正確的序號(hào)填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,點(diǎn)P是△BCD內(nèi)部或邊界上任一點(diǎn),設(shè)
AP
AB
AD
,則λ+μ的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
5
3
,定點(diǎn)M(2,0),橢圓短軸的端點(diǎn)是B1,B2,且MB1⊥MB2
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)M且斜率不為0的直線交橢圓C于A,B兩點(diǎn).試問(wèn)x軸上是否存在異于M的定點(diǎn)P,使PM平分∠APB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓x2+
y2
2
=1的焦距為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案