(本小題滿分15分)
已知橢圓 ()的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程; 
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線交于點(diǎn).
(i)求點(diǎn)的軌跡的方程;
(ii)若為點(diǎn)的軌跡的過點(diǎn)的兩條相互垂直的弦,求四邊形面積的最小值.
解:
(1)∵,∴,∴.           (2分)
∵直線與圓相切,∴,∴.
∴橢圓的方程是.                               (2分)
(2)(i)∵
∴動(dòng)點(diǎn)到定直線的距離等于它到定點(diǎn)的距離,
∴動(dòng)點(diǎn)的軌跡是以為準(zhǔn)線,為焦點(diǎn)的拋物線.
∴點(diǎn)的軌跡的方程為:.                                (4分)
(ii)由題意可知:直線的斜率存在且不為零,          (1分)
令:
則:
由韋達(dá)定理知:
由拋物線定義知:
      (2分)
而:
同樣可得:                       (2分)
則:
(當(dāng)且僅當(dāng)時(shí)取“”號(hào))
所以四邊形面積的最小值是:8                            (2分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系
(1) 寫出曲線的直角坐標(biāo)方程;
(2)若把上各點(diǎn)的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線l:與橢圓相交A,B兩點(diǎn),點(diǎn)C是橢圓上的動(dòng)點(diǎn),則面積的最大值為              。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知焦點(diǎn)在軸上橢圓的長(zhǎng)軸的端點(diǎn)分別為,為橢圓的中心,為右焦點(diǎn),且,離心率
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問:是否存在直線,使點(diǎn)恰好為的垂心?若存在,求出直線的方程,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)、是橢圓上的兩點(diǎn),點(diǎn)是線段的中點(diǎn),線段的垂直平分線與橢圓相交于兩點(diǎn).
(Ⅰ)求直線的方程;
(Ⅱ)求以線段的中點(diǎn)為圓心且與直線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖橢圓的右頂點(diǎn)是,上下兩個(gè)頂點(diǎn)分別為,四邊形是矩形(為原點(diǎn)),點(diǎn)分別為線段的中點(diǎn).
(Ⅰ)證明:直線與直線的交點(diǎn)在橢圓上;
(Ⅱ)若過點(diǎn)的直線交橢圓于兩點(diǎn),關(guān)于軸的對(duì)稱點(diǎn)(不共線),問:直線是否經(jīng)過軸上一定點(diǎn),如果是,求這個(gè)定點(diǎn)的坐標(biāo),如果不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)已知橢圓,設(shè)該橢圓上的點(diǎn)到左焦點(diǎn)的最大距離為,到右頂點(diǎn)的最大距離為.
(Ⅰ) 若,,求橢圓的方程;
(Ⅱ) 設(shè)該橢圓上的點(diǎn)到上頂點(diǎn)的最大距離為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

離心率,一條準(zhǔn)線為的橢圓的標(biāo)準(zhǔn)方程是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,橢圓C:的一個(gè)焦點(diǎn)為F(1,0),且過點(diǎn)(2,0)
(1)求橢圓C的方程;
(2)已知A、B為橢圓上的點(diǎn),且直線AB垂直于軸,又直線=4與軸交于點(diǎn)N,直線AF與BN交
于點(diǎn)M.
(ⅰ)求證:點(diǎn)M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案