如圖橢圓的右頂點(diǎn)是,上下兩個(gè)頂點(diǎn)分別為,四邊形是矩形(為原點(diǎn)),點(diǎn)分別為線段的中點(diǎn).
(Ⅰ)證明:直線與直線的交點(diǎn)在橢圓上;
(Ⅱ)若過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),關(guān)于軸的對(duì)稱點(diǎn)(不共線),問(wèn):直線是否經(jīng)過(guò)軸上一定點(diǎn),如果是,求這個(gè)定點(diǎn)的坐標(biāo),如果不是,說(shuō)明理由.
(1)由題意,得,
所以直線的方程,直線的方程為,------2分
,得
所以直線與直線的交點(diǎn)坐標(biāo)為,---------------4分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232056506181092.png" style="vertical-align:middle;" />,所以點(diǎn)在橢圓上.---------6分
(2)設(shè)的方程為,代入
,
設(shè),則,
,
直線的方程為,
,
代入上式得
(9設(shè),
所以直線經(jīng)過(guò)軸上的點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,點(diǎn)是雙曲線上的動(dòng)點(diǎn),是雙曲線的焦點(diǎn),的平分線上一點(diǎn),且.某同學(xué)用以下方法研究:延長(zhǎng)于點(diǎn),可知為等腰三角形,且的中點(diǎn),得.類似地:點(diǎn)是橢圓上的動(dòng)點(diǎn),是橢圓的焦點(diǎn),的平分線上一點(diǎn),且,則的取值范圍是          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,橢圓上的點(diǎn)到右焦點(diǎn)F的最近距離為2,若橢圓C與x軸交于A、B兩點(diǎn),M是橢圓C上異于A、B的任意一點(diǎn),直線MA交直線于G點(diǎn),直線MB交直線于H點(diǎn)。
(1)求橢圓C的方程;
(2)試探求以GH為直徑的圓是否恒經(jīng)過(guò)x軸上的定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)的坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線與橢圓共焦點(diǎn),且以為漸近線,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分)
已知橢圓 ()的離心率為,直線與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓的方程; 
(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段的垂直平分線交于點(diǎn).
(i)求點(diǎn)的軌跡的方程;
(ii)若為點(diǎn)的軌跡的過(guò)點(diǎn)的兩條相互垂直的弦,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓的焦點(diǎn)在軸上,則它的離心率的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)橢圓C:,F(xiàn)是右焦點(diǎn),是過(guò)點(diǎn)F的一條直線(不與軸平行),交橢圓于A、B兩點(diǎn), 是AB的中垂線,交橢圓的長(zhǎng)軸于一點(diǎn)D,則的值是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓兩焦點(diǎn)為 , ,P在橢圓上,若 △的面積的最大值為12,則橢圓方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓E的下焦點(diǎn)為、上焦點(diǎn)為,其離心 率。過(guò)焦點(diǎn)F2且與軸不垂直的直線l交橢圓于A、B兩點(diǎn)。
(1)求實(shí)數(shù)的值;  
(2)求DABOO為原點(diǎn))面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案