已知a,b∈R,若a>b,則下列不等式成立的是( 。
A、lga>lgb
B、0.5a>0.5b
C、a
1
2
b
1
2
D、
3a
3b
考點(diǎn):不等式比較大小
專(zhuān)題:不等式的解法及應(yīng)用
分析:A.通過(guò)a,b取特殊值,即可得出選項(xiàng)的正誤;
B.由a>b,利用指數(shù)函數(shù)的單調(diào)性即可得出,不正確;
C.通過(guò)a,b取特殊值,即可得出選項(xiàng)的正誤;
D.利用函數(shù)f(x)=
3x
在R上單調(diào)遞增即可得出,正確.
解答: 解:對(duì)于A.取a=-1,b=-2,無(wú)意義,不正確;
對(duì)于B.∵a>b,∴0.5a<0.5b,不正確;
對(duì)于C.取a=-1,b=-2,無(wú)意義,不正確;
對(duì)于D.由于函數(shù)f(x)=
3x
在R上單調(diào)遞增,又a>b,因此
3a
3b
,正確.
故選:D.
點(diǎn)評(píng):本題考查了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)與冪函數(shù)的單調(diào)性,不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足
2x+3y-4≤0
x-2y-2≤0
4x-y+6≥0
,則|x|+y的取值范圍為( 。
A、[2,3]
B、[0,3]
C、[-1,2]
D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:f(x)是周期函數(shù);
(2)x∈[2,4],求f(x)的解析式;
(3)計(jì)算f(0)+f(1)+f(2)+…+(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的圖象如圖所示,根據(jù)圖象回答下列問(wèn)題:
(Ⅰ)函數(shù)y=f(x)的定義域可能是什么?
(Ⅱ)函數(shù)y=f(x)的值域可能是什么?
(Ⅲ)若關(guān)于x的方程f(x)=a有兩解,那么實(shí)數(shù)a的取值范圍是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在D上的函數(shù),若存在區(qū)間,使函數(shù)f(x)在[m,n]上的值域恰為[km,kn],則稱(chēng)函數(shù)f(x)是k型函數(shù).若函數(shù)y=-
1
2
x2+x[m,n]⊆D是3型函數(shù),則m+n的值為( 。
A、0B、8C、-4D、-4或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax,x<0
(a-2)x+2a,x≥0
,若對(duì)任意xx≠x2,都有
f(x1)-f(x )
x1-x2
<0成立,則a的取值范圍是( 。
A、(0,
1
2
]
B、(
1
2
,1)
C、(1,2)
D、(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β均為銳角,cos(α+β)=-
11
14
,cosα=
1
7
,則角cosβ為(  )
A、
1
3
B、
2
2
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求出下列函數(shù)的導(dǎo)函數(shù):
(1)f(x)=
lnx
x
;(2)f(x)=(1+x3)cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4與9的等比中項(xiàng)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案