【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.

【答案】(1)見解析;(2)

【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo)對(duì)參數(shù)分類討論,利用導(dǎo)數(shù)的正負(fù)求得函數(shù)的單調(diào)區(qū)間;(2)將問題轉(zhuǎn)化為,,對(duì)參數(shù)分類討論,分別求得函數(shù)的最大值利用函數(shù)的最大值不小于零,求得參數(shù)的取值范圍.

試題解析:(1) 的定義域?yàn)?/span>

①當(dāng)時(shí),,所以上單調(diào)遞增;

②當(dāng)時(shí),則由,,

所以上單調(diào)遞增,上單調(diào)遞減;

綜上,當(dāng)時(shí), 的單調(diào)遞增區(qū)間為,

當(dāng)時(shí), 的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)由題意知: 恒成立,

00,

,: .

,,

①若上單調(diào)遞增,,

上單調(diào)遞增,

從而,不符合題意;

②若當(dāng)時(shí), 上單調(diào)遞增,

從而,

所以上單調(diào)遞增, ,

從而在,不符合題意;

③若上恒成立,

上單調(diào)遞減, ,

從而上單調(diào)遞減, ,

所以恒成立,綜上所述, 的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn).

I)若平面,求;

II)平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),將的圖象向左平移個(gè)單位長度后得到的圖象,且在區(qū)間內(nèi)的最大值為.

(1)求實(shí)數(shù)的值;

(2)在中,內(nèi)角, 的對(duì)邊分別是, ,若,且,求的周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知95個(gè)數(shù)a1a2,a3,…,a95, a1a2+a1a3+…+a94a95的最小正值是______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, 是正三角形,面, , 的重心分別為 .

(1)證明: ;

(2)求與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)).

)若,求函數(shù)處的切線方程.

)求函數(shù)的單調(diào)區(qū)間.

)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在分以下的學(xué)生后, 共有男生名,女生名,現(xiàn)采用分層抽樣的方法,從中抽取了名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為組, 得到如下頻數(shù)分布表.

)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,能否判斷數(shù)學(xué)成績與性別有關(guān);

)規(guī)定分以上為優(yōu)分(含分),請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有%以上的把握認(rèn)為“數(shù)學(xué)成績與性別有關(guān)”,( ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校夏令營有3名男同學(xué)A、B、C和3名女同學(xué)X,Y,Z,其年級(jí)情況如,現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競賽(每人被選到的可能性相同).

(1)用表中字母列舉出所有可能的結(jié)果;

(2)設(shè)M為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件M發(fā)生的概率.

一年級(jí)

二年級(jí)

三年級(jí)

男同學(xué)

A

B

C

女同學(xué)

X

Y

Z

查看答案和解析>>

同步練習(xí)冊(cè)答案