分析 (Ⅰ)利用f (x)兩相鄰的零點(diǎn)之間的距離為$\frac{π}{2}$,求出ω,將f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后圖象對(duì)應(yīng)的函數(shù)g(x)是偶函數(shù),求出φ,即可求函數(shù)f(x)的解析式;
(Ⅱ)利用正弦函數(shù)的性質(zhì),即可求函數(shù)f(x)的對(duì)稱(chēng)軸及單調(diào)遞增區(qū)間.
解答 解:(Ⅰ)∵f (x)兩相鄰的零點(diǎn)之間的距離為$\frac{π}{2}$,
∴$\frac{T}{2}$=$\frac{π}{2}$,即$\frac{2π}{2ω}$=$\frac{π}{2}$,故ω=2(2分)
∴g(x)=sin[2(x+$\frac{π}{6}$)+φ]=sin(2x+$\frac{π}{3}$+φ)(4分)
∵g (x)是偶函數(shù),且0<φ<π,
∴$\frac{π}{3}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$(6分)
∴f(x)=sin(2x+$\frac{π}{6}$)(8分)
(Ⅱ)對(duì)稱(chēng)軸為x=$\frac{kπ}{2}$+$\frac{π}{6}$(10分)
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$得:kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$
∴函數(shù)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)(12分)
點(diǎn)評(píng) 本題考查三角函數(shù)的圖象與性質(zhì),考查學(xué)生的計(jì)算能力,正確求出函數(shù)的解析式是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
排隊(duì)人數(shù) | 5人及以下 | 6 | 7 | 8 | 9 | 10人及以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.3 | 0.1 | 0.04 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com