精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)如圖所示,在正方體中,
E為AB的中點
(1)若的中點,求證: ∥面
(2) 若的中點,求二面角的余弦值;

(1)  略
(2)  
解析:(1)證明:如圖,連接,
    ∵ 的中點,的中點
∴     ………………………2分
又   ∴ 
∴  ∥面   ………………………4分
(2) 7分
二面角的余弦值為。 …………9分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題


(本小題滿分14分)
在三棱錐中,是邊長為的正三角形,平面⊥平面,、分別為的中點。
(1)證明:
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,已知,側面

(1)求直線C1B與底面ABC所成角的正弦值;
(2)在棱(不包含端點上確定一點的位置,使得(要求說明理由).
(3)在(2)的條件下,若,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
在棱長為的正方體中,是線段 中點,.
(Ⅰ) 求證:^;(Ⅱ) 求證:∥平面
(Ⅲ) 求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖1,在直角梯形ABCD中,AB//CD,E為CD上一點,且DE=4,過E作EF//AD交BC于F現將沿EF折到使,如圖2。

(I)求證:PE⊥平面ADP;
(II)求異面直線BD與PF所成角的余弦值;
(III)在線段PF上是否存在一點M,使DM與平在ADP所成的角為?若存在,確定點M的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖,正四面體的頂點、、分別在兩兩垂直的三條射線、上,給出下列四個命題:  
①多面體是正三棱錐;
②直線平面;
③直線所成的角為;       
④二面角.
其中真命題有_______________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知在三棱錐T-ABC中,TA,TB,TC兩兩垂直,T在地面ABC上的投影為D,給出下列命題:
①TA⊥BC, TB⊥AC, TC⊥AB;
②△ABC是銳角三角形;
;
(注:表示△ABC的面積)
其中正確的是_______(寫出所有正確命題的編號)。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是平面,是直線,且平面,則與平面的位置關系是 
A.平面B.平面
C.平面D.與平面相交但不垂直

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若球O的球面上共有三點A、B、C,其中任意兩點間的球面距離都等于大圓周長的經過A、B、C這三點的小圓周長為,則球O的體積為       .

查看答案和解析>>

同步練習冊答案