有窮等差數(shù)列{an}共n項(xiàng),它的前三項(xiàng)和為48,后三項(xiàng)和為72,若Sn=80,則n=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列前三項(xiàng)和為48,后三項(xiàng)和為72,結(jié)合等差數(shù)列的性質(zhì)得到a1+an=40.然后由等差數(shù)列前n項(xiàng)和公式得答案.
解答: 解:由題意可得,
a1+a2+a3+an+an-1+an-2=48+72=120,
即3(a1+an)=120,a1+an=40.
由Sn=
(a1+an)•n
2
=80,
40n
2
=80
,解得n=4.
故答案為:4.
點(diǎn)評(píng):本題考查了等差數(shù)列的性質(zhì),考查了等差數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={5,log2(a+3)},B={a,b},若A∩B={2},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3x
(1)求函數(shù)在[-1,1]上的最值;
(2)求曲線y=f(x)在點(diǎn)(-1,2)處的切線方程l;
(3)求由切線l,曲線f(x)=x3-3x,x=1圍成的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-1n(1+x2)(a>0).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)x>0時(shí),1n(1+x2)<x;
(Ⅲ)證明:(1+
1
24
)(1+
1
34
)…(1+
1
n4
)<e(n∈N*,n≥2,其中無理數(shù)e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過直線已知實(shí)數(shù)x,y滿足方程(x-3)2+y2=9,求-2y-3x的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列幾個(gè)命題:
①方程x2+(a-3)x+a=0的有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,則a<0.
②函數(shù)y=
x2-1
+
1-x2
是偶函數(shù),但不是奇函數(shù).
③函數(shù)f(x)的值域是[-2,2],則函數(shù)f(x+1)的值域?yàn)閇-3,1].
④一條曲線y=|3-x2|和直線y=a(a∈R)的公共點(diǎn)個(gè)數(shù)是m,則m的值不可能是1.
⑤函數(shù)f(x)=lg(5+4x-x2)的單調(diào)遞增區(qū)間為(-∞,2]
其中正確的有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x2-kx-8在[2,10]上具有單調(diào)性,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

巳知某幾何體的三視圖如圖所示,其主視圖和左視圖都是邊長為2的正方形,俯視圖是一個(gè)圓,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=f′(
π
4
)cosx+sinx,f′(x)是f(x)的導(dǎo)函數(shù),則f(
π
4
)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案