設(shè)全集U=R,∁UA={x|x<-2或x≥5},B={x|x>a},若A∩B=∅,則a的取值范圍是
 
考點:交集及其運算
專題:集合
分析:由全集U=R及A的補集確定出A,根據(jù)A與B的交集為空集,確定出a的范圍即可.
解答: 解:∵全集U=R,∁UA={x|x<-2或x≥5},
∴A={x|-2≤x<5},
∵B={x|x>a},且A∩B=∅,
∴a≥5.
故答案為:a≥5.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個求和的程序框圖,如果其中判斷框內(nèi)填入的條件是:i=3?,那么輸出S=( 。
A、
1
2
B、
1
2
+
1
4
C、
1
2
+
1
4
+
1
6
D、
1
2
+
1
4
+
1
6
+
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={x|x2-x-2≥0},Q={y|y=
1
2
x2-1,x∈P},則P∩Q=( 。
A、{m|-1≤m<2}
B、{m|-1<m<2}
C、{m|m≥2}
D、{-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)z=1-i,則
2
z
+z2=( 。
A、-1-iB、1-i
C、-l+iD、l+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M={y|y=x2,x∈R},N={y|x2+y2=1,x∈R,y∈R},則M∩N=( 。
A、[-2,2]
B、[0,2]
C、[0,1]
D、[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的程序,若結(jié)束時輸出的結(jié)果不小于3,則t的取值范圍為( 。
A、t≥
1
4
B、t≥
1
8
C、t≤
1
4
D、t≤
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直三棱柱ABC-A1B1C1中,AA1=2,二面角B-AA1-C1的大小等于60°,B到面AC1的距離等于
3
,C1到面AB1的距離等于2
3
,則直線BC1與直線AB1所成角的正切值等于( 。
A、
7
B、
6
C、
5
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知?ABCD的兩條對角線AC與BD交于E,O是任意一點.
求證:
OA
+
OB
+
OC
+
OD
=4
OE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程
x2
k
-
y2
k-2
=1表示雙曲線,則k的取值范圍是( 。
A、k>2B、k<0
C、k>2,或k<0D、0<k<2

查看答案和解析>>

同步練習(xí)冊答案