【題目】設(shè)函數(shù)f(x)=﹣x3+bx(b為常數(shù)),若方程f(x)=0的根都在區(qū)間[﹣2,2]內(nèi),且函數(shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,則b的取值范圍是( )
A.[3,+∞)
B.(3,4]
C.[3,4]
D.(﹣∞,4]
【答案】C
【解析】解:函數(shù)f(x)=﹣x3+bx(b為常數(shù)),
所以f(x)=﹣x(x2﹣b)=0的根都在區(qū)間[﹣2,2]內(nèi),
則≤2,得0≤b≤4;
又因?yàn)楹瘮?shù)f(x)在區(qū)間(0,1)上單調(diào)遞增,
所以f′(x)=﹣3x2+b≥0在區(qū)間(0,1)上恒成立,
所以b≥3,
綜上可得:3≤b≤4,
故選:C.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求在處的切線方程;
(2)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一條直線與一個(gè)平面垂直,則稱此直線與平面構(gòu)成一個(gè)“正交線面對(duì)”.那么在一個(gè)正方體中,由兩個(gè)頂點(diǎn)確定的直線與含有四個(gè)頂點(diǎn)的平面構(gòu)成的“正交線面對(duì)”的個(gè)數(shù)是( )
A. 48 B. 36 C. 24 D. 18
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線,,則下列結(jié)論正確的是( )
A. 把上所有的點(diǎn)向右平移個(gè)單位長(zhǎng)度,再把所有圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),得到曲線
B. 把上所有點(diǎn)向左平移個(gè)單位長(zhǎng)度,再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),得到曲線
C. 把上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍(縱坐標(biāo)不變),再把所得圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,得到曲線
D. 把上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的3倍(縱坐標(biāo)不變),再把所得圖象上所有的點(diǎn)向左平移個(gè)單位長(zhǎng)度,得到曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市大學(xué)生創(chuàng)業(yè)孵化基地某公司生產(chǎn)一種“儒風(fēng)鄒城”特色的旅游商品.該公司年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2.7萬(wàn)元;設(shè)該公司年內(nèi)共生產(chǎn)該旅游商品千件并全部銷售完,每千件的銷售收入為萬(wàn)元,且滿足函數(shù)關(guān)系:.
(Ⅰ)寫出年利潤(rùn)(萬(wàn)元)關(guān)于該旅游商品(千件)的函數(shù)解析式;
(Ⅱ)年產(chǎn)量為多少千件時(shí),該公司在該旅游商品的生產(chǎn)中所獲年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知=,,函數(shù)是奇函數(shù)。
(1)求a,c的值;
(2)當(dāng)x∈[-l,2]時(shí),的最小值是1,求的解析式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(1)證明:AC1⊥A1B;
(2)設(shè)直線AA1與平面BCC1B1的距離為 ,求二面角A1﹣AB﹣C的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com