【題目】已知命題甲:對任意實數(shù),不等式恒成立;命題乙:已知滿足,且恒成立.

1)分別求出甲乙為真命題時,實數(shù)的取值范圍;

2)求實數(shù)的取值范圍,使命題甲乙中有且只有一個真命題.

【答案】1)甲為真命題時,;乙為真命題時,2

【解析】

1)甲為真命題時,先轉(zhuǎn)化為一元二次不等式恒成立問題,根據(jù)二次函數(shù)圖象解得實數(shù)的取值范圍,乙為真命題時,利用基本不等式求得最小值,再根據(jù)恒成立得實數(shù)的取值范圍;

2)分類求交集:甲真乙假與乙真甲假,最后求并集得結(jié)果.

1

時,成立;

時,要使恒成立,需

綜上,甲為真命題時,;

(當且僅當時取等號)

恒成立,

綜上, 乙為真命題時,

2)命題甲乙中有且只有一個真命題,即甲真乙假與乙真甲假,

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】.華為公司研發(fā)的5G技術(shù)是中國在高科技領域的重大創(chuàng)新,目前處于世界領先地位,今年即將投入使用,它必將為人們生活帶來別樣的精彩,成為每個中國人的驕傲.現(xiàn)假設在一段光纖中有條通信線路,需要輸送種數(shù)據(jù)包,每條線路單位時間內(nèi)輸送不同數(shù)據(jù)包的大小數(shù)值如表所示.若在單位時間內(nèi),每條線路只能輸送一種數(shù)據(jù)包,且使完成種數(shù)據(jù)包輸送的數(shù)值總和最大,則下列敘述正確的序號是_______.

①甲線路只能輸送第四種數(shù)據(jù)包;

②乙線路不能輸送第二種數(shù)據(jù)包;

③丙線路可以不輸送第三種數(shù)據(jù)包;

④丁線路可以輸送第三種數(shù)據(jù)包;

⑤戊線路只能輸送第四種數(shù)據(jù)包.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)討論的單調(diào)性;

(2)若有三個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級有400名學生參加某項體育測試,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:,整理得到如下頻率分布直方圖:

1)若該樣本中男生有55人,試估計該學校高三年級女生總?cè)藬?shù);

2)若規(guī)定小于60分為“不及格”,從該學校高三年級學生中隨機抽取一人,估計該學生不及格的概率;

3)若規(guī)定分數(shù)在為“良好”,為“優(yōu)秀”.用頻率估計概率,從該校高三年級隨機抽取三人,記該項測試分數(shù)為“良好”或“優(yōu)秀”的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為平行四邊形,四邊形ADEF是正方形,且BD平面CDE,H是BE的中點,G是AE,DF的交點

(1)求證:GH平面CDE;

(2)求證:面ADEF面ABCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)的圖象向左平移1個單位后關于y軸對稱,當x2x11時,[fx2)﹣fx1]x2x1)<0恒成立,設af),bf2),cf3),則ab、c的大小關系為( 。

A.cabB.cbaC.acbD.bac

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足.

(1)求函數(shù)f(x)g(x)的表達式;

(2)時,不等式恒成立,求實數(shù)a的取值范圍;

(3)若方程上恰有一個實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的參數(shù)方程為為參數(shù)),以直角坐標系的原點o為極點,x軸的正半軸為極軸,建立極坐標系,直線l的極坐標方程是:

(Ⅰ)求曲線C的普通方程和直線l的直角坐標方程:

(Ⅱ)點P是曲線C上的動點,求點P到直線l距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知若橢圓)交軸于兩點,點是橢圓上異于,的任意一點,直線,分別交軸于點,則為定值.

1)若將雙曲線與橢圓類比,試寫出類比得到的命題;

2)判定(1)類比得到命題的真假,請說明理由.

查看答案和解析>>

同步練習冊答案