【題目】.華為公司研發(fā)的5G技術(shù)是中國在高科技領(lǐng)域的重大創(chuàng)新,目前處于世界領(lǐng)先地位,今年即將投入使用,它必將為人們生活帶來別樣的精彩,成為每個中國人的驕傲.現(xiàn)假設(shè)在一段光纖中有條通信線路,需要輸送種數(shù)據(jù)包,每條線路單位時間內(nèi)輸送不同數(shù)據(jù)包的大小數(shù)值如表所示.若在單位時間內(nèi),每條線路只能輸送一種數(shù)據(jù)包,且使完成種數(shù)據(jù)包輸送的數(shù)值總和最大,則下列敘述正確的序號是_______.

①甲線路只能輸送第四種數(shù)據(jù)包;

②乙線路不能輸送第二種數(shù)據(jù)包;

③丙線路可以不輸送第三種數(shù)據(jù)包;

④丁線路可以輸送第三種數(shù)據(jù)包;

⑤戊線路只能輸送第四種數(shù)據(jù)包.

【答案】②⑤

【解析】

由表中數(shù)值可知:完成種數(shù)據(jù)包輸送的數(shù)值總和最大值為:,但不能同時取得.根據(jù)每條線路單位時間內(nèi)輸送不同數(shù)據(jù)包,要使總和最大,則從甲可以輸送第二或第四種數(shù)據(jù)包入手,得到丙只能輸送第三種數(shù)據(jù)包入丁則不可以輸送第三種數(shù)據(jù)包,則丁輸送第五種數(shù)據(jù)包,再對乙進(jìn)行分析確定戊比較即可.

由表可知:完成種數(shù)據(jù)包輸送的數(shù)值總和最大值為:

,但不能同時取得.

要使總和最大,甲可以輸送第二或第四種數(shù)據(jù)包,丙只能輸送第三種數(shù)據(jù)包,

丁則不可以輸送第三種數(shù)據(jù)包,所以丁輸送第五種數(shù)據(jù)包,

乙若輸送第四種數(shù)據(jù)包,戊輸送第一種數(shù)據(jù)包,此時,數(shù)值總和為:

,

乙若不輸送第二種數(shù)據(jù)包,輸送第一種數(shù)據(jù)包,甲輸送第二種數(shù)據(jù)包,

則戊輸送第四種數(shù)據(jù)包,此時,數(shù)值總和為:

所以乙不輸送第二種數(shù)據(jù)包,戊輸只能送第四種數(shù)據(jù)包.

故答案為:②⑤

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】年東京夏季奧運(yùn)會將設(shè)置米男女混合泳接力這一新的比賽項(xiàng)目,比賽的規(guī)則是:每個參賽國家派出22女共計(jì)4名運(yùn)動員比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿米且由一名運(yùn)動員完成, 每個運(yùn)動員都要出場. 現(xiàn)在中國隊(duì)確定了備戰(zhàn)該項(xiàng)目的4名運(yùn)動員名單,其中女運(yùn)動員甲只能承擔(dān)仰泳或者自由泳,男運(yùn)動員乙只能承擔(dān)蝶泳或自由泳,剩下的男女各一名運(yùn)動員則四種泳姿都可以上,那么中國隊(duì)共有( )種兵布陣的方式.

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線內(nèi)有一點(diǎn),過的兩條直線,分別與拋物線交于,,兩點(diǎn),且滿足,,已知線段的中點(diǎn)為,直線的斜率為.

(1)求證:點(diǎn)的橫坐標(biāo)為定值;

(2)如果,點(diǎn)的縱坐標(biāo)小于3,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時,解不等式;

(2)若,不等式恒成立,求的取值范圍;

(3)若關(guān)于的方程的解集中恰好有一個元素,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在2016年的自主招生考試成績中隨機(jī)抽取100位學(xué)生的筆試成績,按成績分組,得到的頻率分布表如下所示.

1)請先求出頻率分布表中①②位置相應(yīng)的數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖(如圖所示);

組號

分組

頻數(shù)

頻率

1

5

0.050

2

0.350

3

30

4

20

0.200

5

10

0.100

合計(jì)

100

1.000

頻率分布直方圖

2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6位學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少位學(xué)生進(jìn)入第二輪面試;

3)在(2)的前提下,學(xué)校決定在6位學(xué)生中隨機(jī)抽取2位學(xué)生接受A考官進(jìn)行面試,求第4組至少有一位學(xué)生被考官A面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:的離心率為,點(diǎn)在橢圓C上,O為坐標(biāo)原點(diǎn).

求橢圓C的方程;

設(shè)動直線l與橢圓C有且僅有一個公共點(diǎn),且l與圓的相交于不在坐標(biāo)軸上的兩點(diǎn),,記直線,的斜率分別為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對某產(chǎn)品16月份銷售量及其價格進(jìn)行調(diào)查,其售價x和銷售量y之間的一組數(shù)據(jù)如下表所示:

月份i

1

2

3

4

5

6

單價(元)

9

9.5

10

10.5

11

8

銷售量(件)

11

10

8

6

5

14

1)根據(jù)15月份的數(shù)據(jù),求出y關(guān)于x的回歸直線方程;

2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問所得到的回歸直線方程是否理想?

3)預(yù)計(jì)在今后的銷售中,銷售量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是2.5/件,為獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1)若xA,使得xB為真命題,求m的取值范圍;

2)是否存在實(shí)數(shù)m,使xAXB必要不充分條件,若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題甲:對任意實(shí)數(shù),不等式恒成立;命題乙:已知滿足,且恒成立.

1)分別求出甲乙為真命題時,實(shí)數(shù)的取值范圍;

2)求實(shí)數(shù)的取值范圍,使命題甲乙中有且只有一個真命題.

查看答案和解析>>

同步練習(xí)冊答案