已知tan(α+β)=
1
3
,tanβ=
1
4
則tanα的值為(  )
A、
1
12
B、
1
13
C、
7
13
D、
12
13
分析:把α變?yōu)椋é?β)-β,然后利用兩角差的正切函數(shù)公式化簡(jiǎn)后,將tan(α+β)和tanβ的值代入即可求出值.
解答:解:tanα=tan[(α+β)-β]=
tan(α+β)-tanβ
1+tan(α+β)•tanβ
=
1
13

故選B
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用兩角和與差的正切函數(shù)公式化簡(jiǎn)求值.本題的關(guān)鍵是利用α=(α+β)-β這個(gè)變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
1
3
,cosβ=
5
5
,α,β∈(0,π)
(1)求tan(α+β)的值;
(2)求函數(shù)f(x)=
2
sin(x-α)+cos(x+β)
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα,tanβ為方程x2-3x-3=0兩根.
(1)求tan(α+β)的值;
(2)求sin2(α+β)-3sin(2α+2β)-3cos2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan(θ+
π
4
)=-3
,則sin2θ+sinθcosθ-2cos2θ=( 。
A、-
4
3
B、
5
4
C、-
3
4
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tan
α
2
=2,
求;(1)tan(α+
π
4
)
的值;
(2)
6sinα+cosα
3sinα-2cosα
的值;
(3)3sin2α+4sinαcosα+5cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知sinα-cosα=
17
13
,α∈(0,π),求tanα的值;
(2)已知tanα=2,求
2sinα-cosα
sinα+3cosα

查看答案和解析>>

同步練習(xí)冊(cè)答案