1.不等式-2x-1<3的解集為(  )
A.(2,+∞)B.(-∞,2)C.(-2,+∞)D.(-∞,-2)

分析 直接利用不等式化簡(jiǎn)求解即可.

解答 解:不等式-2x-1<3,可得x>-2.
不等式-2x-1<3的解集為(-2,+∞).
故選:C.

點(diǎn)評(píng) 本題考查一次不等式的解法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.若f(x)=x2-x+b,且f(log2a)=b,log2f(a)=2(a>0且a≠1),
(Ⅰ)求a,b;
(Ⅱ)求f(log2x)的最小值及相應(yīng) x的值;
(Ⅲ)若f(log2x)>f(1)且log2f(x)<f(1),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.雙曲線$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的漸近線方程為( 。
A.y=±$\frac{4}{3}$xB.y=±$\frac{3}{4}$xC.y=±$\frac{16}{9}$xD.y=±$\frac{9}{16}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足a1=2,n(an+1-n-1)=(n+1)(an+n)(n∈N*).
(1)求證:數(shù)列{$\frac{a_n}{n}$}是等差數(shù)列,并求其通項(xiàng)公式;
(2)設(shè)bn=$\sqrt{2{a_n}}$-15,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知點(diǎn)(x,y)滿足不等式組$\left\{{\begin{array}{l}{x-4y+3≤0}\\{2x-y-1≥0}\\{3x+2y-19≤0}\end{array}}\right.$,則$\frac{y}{x}$的最大值為( 。
A.1B.$\frac{2}{5}$C.$\frac{5}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{{\begin{array}{l}{y≥\frac{1}{2}x}\\{y≤3x}\\{y≤-x+1}\end{array}}\right.$目標(biāo)函數(shù)z=ax+y取最大值有無(wú)窮多個(gè)最優(yōu)解,則實(shí)數(shù)a的取值為-3或1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題“?x0∈R,2x0-3>1”的否定是( 。
A.?x0∈R,2x0-3≤1B.?x∈R,2x-3>1C.?x∈R,2x-3≤1D.?x0∈R,2x0-3>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.給出如下四個(gè)判斷:
①若“p或q”為假命題,則p、q中至多有一個(gè)為假命題;
②命題“若a>b,則log2a>log2b”的否命題為“若a≤b,則log2a≤log2b”;
③對(duì)命題“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;
④在△ABC中,“sinA>$\frac{\sqrt{3}}{2}$”是“∠A>$\frac{π}{3}$”的充分不必要條件.
其中不正確的判斷的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過(guò)F1斜率為1的直線l與橢圓C相交于A,B兩點(diǎn),且$\overrightarrow{A{F_1}}=3\overrightarrow{{F_1}B}$.
(1)求橢圓的離心率;
(2)設(shè)點(diǎn)P(0,-1),|PA|=|PB|,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案