2.小明同學(xué)在籃球場上做定點(diǎn)投籃游戲,已知他在A區(qū)投中的概率為$\frac{3}{4}$,在B區(qū)投中的概率為$\frac{2}{3}$,在C區(qū)投中的概率為$\frac{1}{2}$,假設(shè)他在各區(qū)投籃是否投中的事件相互獨(dú)立,且他在A,B,C區(qū)各投籃一次
(Ⅰ)求小明至少投中2次的概率
(Ⅱ)用隨機(jī)變量η表示該同學(xué)投中次數(shù),求η的分布列及數(shù)學(xué)期望.

分析 記小明在A區(qū)投中為事件A,在B區(qū)投中為事件B,在C區(qū)投中為事件C,
則P(A)=$\frac{3}{4}$,P(B)=$\frac{2}{3}$,P(C)=$\frac{1}{2}$.
(Ⅰ)由互斥事件及相互獨(dú)立事件的概率公式求解;
(Ⅱ)由題意可知,η的所有可能取值為0,1,2,3.分別求其概率,可得η的分布列及數(shù)學(xué)期望.

解答 解:記小明在A區(qū)投中為事件A,在B區(qū)投中為事件B,在C區(qū)投中為事件C,
則P(A)=$\frac{3}{4}$,P(B)=$\frac{2}{3}$,P(C)=$\frac{1}{2}$.
(Ⅰ)小明至少投中2次的概率P=P($AB\overline{C}+A\overline{B}C+\overline{A}BC+ABC$)
=P(AB$\overline{C}$)+P($A\overline{B}C$)+P($\overline{A}BC$)+P(ABC)
=$\frac{3}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}+\frac{3}{4}×\frac{2}{3}×\frac{1}{2}$=$\frac{17}{24}$;
(Ⅱ)由題意可知,η的所有可能取值為0,1,2,3.
P(η=0)=$\frac{1}{4}×\frac{1}{3}×\frac{1}{2}=\frac{1}{24}$.
P(η=1)=$\frac{3}{4}×\frac{1}{3}×\frac{1}{2}+\frac{1}{4}×\frac{2}{3}×\frac{1}{2}+\frac{1}{4}×\frac{1}{3}×\frac{1}{2}$=$\frac{1}{4}$.
P(η=2)=1-$\frac{1}{24}-\frac{1}{4}-\frac{1}{4}=\frac{11}{24}$.
P(η=3)=$\frac{3}{4}×\frac{2}{3}×\frac{1}{2}=\frac{1}{4}$.
∴η的分布列為:

 η 0 1 2 3
 P  $\frac{1}{24}$  $\frac{1}{4}$  $\frac{11}{24}$  $\frac{1}{4}$
數(shù)學(xué)期望E(η)=$0×\frac{1}{24}+1×\frac{1}{4}+2×\frac{11}{24}+3×\frac{1}{4}$=$\frac{23}{12}$.

點(diǎn)評 本題考查概率的求法,考查對立事件概率計(jì)算公式、相互獨(dú)立事件概率乘法公式、互斥事件概率加法公式的合理運(yùn)用,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某工廠為了對研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
 單價x元 99.2 9.4 9.6 9.8 10 
銷量y件  10094 93 90 85 78 
(1)求回歸直線方程$\widehat{y}$=bx+a;
(2)預(yù)計(jì)在今后的銷售中,銷量與單價仍然服從(1)中的關(guān)系,且該產(chǎn)品的成本是5元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)(附:對于一組數(shù)據(jù)(μ1,v1),(μ2,v2),…,(μn,vn),其回歸直線$\widehat{v}$=α+βμ的斜率和截距的最小二乘估計(jì)分別為:β=$\frac{\sum_{i=1}^{n}({μ}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,α=$\overline{v}$-β$\overline{u}$),$\sum_{i=1}^{6}{x}_{i}{y}_{i}$=5116,$\sum_{i=1}^{6}({x}_{i}-\overline{x})^{2}$=0.7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}滿足:$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=$\frac{2}{{a}_{n}×{a}_{n+1}}$,數(shù)列{bn}滿足:Sn=(2n-1)bn,其中 Sn為數(shù)列{bn}的前n項(xiàng)和,且a1=b1=1.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)求數(shù)列{an•bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)O是正n邊形A1A2…An的中心,求證:$\overrightarrow{O{A}_{1}}$+$\overrightarrow{O{A}_{2}}$+…+$\overrightarrow{O{A}_{n}}$=$\overrightarrow{0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在四棱錐P-ABCD中,底面ABCD為平行四邊形,G為PB的中點(diǎn),則三棱錐D-GAB與三棱錐P-GAC體積之比為1:1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知a,b,c 分別是銳角△ABC三個內(nèi)角A,B,C的對邊,且(sin A+sin B)(a-b)=(sin C-sin B )c,且b+c=8.
(Ⅰ)求A的值; 
(Ⅱ) 求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知兩直線m、n和平面α,若m⊥α,n∥α,則直線m、n的關(guān)系一定成立的是( 。
A.m與n是異面直線B.m⊥nC.m與n是相交直線D.m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4,|$\overrightarrow$|=2,($\overrightarrow{a}$-3$\overrightarrow$)($\overrightarrow{a}$+$\overrightarrow$)≤0,則$\overrightarrow$在$\overrightarrow{a}$上的投影長度取值范圍是$\frac{1}{2}$≤|$\overrightarrow$|cosθ≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某種樹木的底部周長的取值范圍是[80,130],它的頻率分布直方圖如圖所示,若在抽測的n株樹木中,樹木的底部周長小于100的樹有120株,則n=(  )
A.120B.200C.300D.500

查看答案和解析>>

同步練習(xí)冊答案