【題目】已知是拋物線上任意一點,,且點為線段的中點.
(Ⅰ)求點的軌跡的方程;
(Ⅱ)若為點關于原點的對稱點,過的直線交曲線于、 兩點,直線交直線于點,求證:.
科目:高中數(shù)學 來源: 題型:
【題目】某“雙一流”大學專業(yè)獎學金是以所學專業(yè)各科考試成績作為評選依據(jù),分為專業(yè)一等獎學金(獎金額元)、專業(yè)二等獎學金(獎金額元)及專業(yè)三等獎學金(獎金額元),且專業(yè)獎學金每個學生一年最多只能獲得一次.圖(1)是統(tǒng)計了該校年名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業(yè)獎學金的頻率柱狀圖.
(Ⅰ)求這名學生中獲得專業(yè)三等獎學金的人數(shù);
(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯(lián)表并判斷是否有的把握認為該校學生獲得專業(yè)一、二等獎學金與是否是“努力型”學生有關?
(Ⅲ)若以頻率作為概率,從該校任選一名學生,記該學生年獲得的專業(yè)獎學金額為隨機變量,求隨機變量的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,拋物線關于軸對稱,它的頂點在坐標原點,點、、均在拋物線上.
(1)寫出該拋物線的方程及其準線方程;
(2)當與的斜率存在且傾斜角互補時,求的值及直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:()上橫坐標為4的點到焦點的距離為5.
(1)求拋物線的方程;
(2)設直線與拋物線交于不同兩點,若滿足,證明直線恒過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝在所著的《詳解九章算法》一書中用如圖所示的三角形解釋二項展開式的系數(shù)規(guī)律,現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,記作數(shù)列,若數(shù)列的前項和為,則_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,,分別為橢圓的左,右焦點,橢圓上點的橫坐標等于右焦點的橫坐標,其縱坐標等于短半軸長的,則橢圓的離心率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,且曲線與在處有相同的切線.
(Ⅰ)求實數(shù)的值;
(Ⅱ)求證:在上恒成立;
(Ⅲ)當時,求方程在區(qū)間內實根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,射線的普通方程為,曲線的參數(shù)方程為(為參數(shù)).以O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出與的極坐標方程;
(2)設與的交點為P(點P不為極點),與的交點為Q,當在上變化時,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com