1.已知A={x|-3<x<5},B={x<a},若滿足A⊆B,則實數(shù)a的取值范圍是[5,+∞).

分析 根據(jù)子集的概念,由A⊆B便可得出a≥5,即得出a的取值范圍.

解答 解:∵A⊆B;
∴a≥5;
∴實數(shù)a的取值范圍是[5,+∞).
故答案為:[5,+∞).

點評 考查描述法表示集合的概念及形式,以及子集的概念.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,若$\frac{a}$=$\frac{b+\sqrt{3}c}{a}$,sinC=2$\sqrt{3}$sinB,則tanA=( 。
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}
(1)當m=3時,求集合A∩B;∁RB;(∁RB)∪(∁RA);
(2)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,函數(shù)f(x)的圖象為折線ACB,則不等式f(x)ln3-ln(x+2)≥0的解集為[-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,若b2+c2=2bcsinAtanB+a2,則這個三角形的形狀是( 。
A.直角三角形B.銳角三角形C.鈍角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求函數(shù)f(x)=ln$\frac{1}{2x+1}$+x的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{1}{2}{x^2}-({{a^2}-a})lnx-x$(a≤$\frac{1}{2}$).
(Ⅰ) 討論函數(shù)f(x)的單調(diào)性;
(Ⅱ) 設g(x)=a2lnx2-x,若f(x)>g(x)對?x>1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{2a}$x2-lnx,其中a>0.
(1)當a=4時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當x∈[1,2]時,不等式f(x)>1恒成立,其實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線方程為y=±2x,則雙曲線的離心率為( 。
A.$\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.2D.4

查看答案和解析>>

同步練習冊答案