6.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}
(1)當(dāng)m=3時(shí),求集合A∩B;∁RB;(∁RB)∪(∁RA);
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

分析 (1)m=3時(shí),集合A={x|-2≤x≤5},B={x|4≤x≤5},由此能求出集合A∩B;∁RB;(∁RB)∪(∁RA).
(2)由集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,列出不等式組,能求出實(shí)數(shù)m的取值范圍.

解答 解:(1)m=3時(shí),集合A={x|-2≤x≤5},B={x|4≤x≤5},
∴集合A∩B={x|4≤x≤5},
RB={x|x<4或x>5},∁RA={x|x<-2或x>5},
(∁RB)∪(∁RA)={x|x<4或x>5}.
(2)∵集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},B⊆A,
∴$\left\{\begin{array}{l}{m+1≥-2}\\{2m-1≤5}\end{array}\right.$,解得-3≤m≤3,
∴實(shí)數(shù)m的取值范圍是[-3,3].

點(diǎn)評(píng) 本題考查集合的交、并、補(bǔ)集的運(yùn)算及應(yīng)用,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意子集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若△ABC的內(nèi)角A、B、C所對(duì)的邊a、b、c滿足(a+b)2-c2=3,且C=60°,則ab的值為(  )
A.$\frac{4}{3}$B.6-3$\sqrt{3}$C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(1)已知3a=5b=c,且$\frac{1}{a}$+$\frac{1}$=2,求c的值.
(2)若2x=3y,且x,y都是正數(shù),判斷2x,3y的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.記<a,b>=$\left\{\begin{array}{l}{a,a≥b}\\{b,a<b}\end{array}\right.$,設(shè)an=<2n+1,3n-9>,則數(shù)列[an}的前30項(xiàng)和為( 。
A.960B.1125C.1170D.1250

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若a1=1,且a1+2a2+3a3+…+nan=n2,則an=2-$\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={x|x2-8x+15=0},B={x|x2-ax-b=0},若∅?B?A,求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合I={a,b,c,d,e,f,g,h},(∁IA)∪(∁IB)={a,b,c,e,f,h},(∁IA)∩(CIB)={a,e},(∁IA)∩B={c,f},求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知A={x|-3<x<5},B={x<a},若滿足A⊆B,則實(shí)數(shù)a的取值范圍是[5,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知橢圓Γ的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,離心率等于$\frac{\sqrt{3}}{2}$,它的一個(gè)頂點(diǎn)恰好是拋物線y=$\frac{1}{4}$x2的焦點(diǎn).
(1)求橢圓Γ的標(biāo)準(zhǔn)方程;
(Ⅱ)Q為橢圓Γ的左頂點(diǎn),直線l經(jīng)過(guò)點(diǎn)(-$\frac{6}{5}$,0)與橢圓Γ交于A,B兩點(diǎn).
(1)若直線l垂直于x軸,求∠AQB的大小;
(2)若直線l與x軸不垂直,是否存在直線l使得△QAB為等腰三角形?如果存在,求出直線l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案