17.若集合A={x|-1≤x≤1},B={x|0<x≤2},則A∩B=( 。
A.{x|0<x≤1}B.{x|-1≤x<0}C.{x|0≤x≤2}D.{x|0≤x≤1}

分析 由A與B,求出兩集合的交集即可.

解答 解:∵A={x|-1≤x≤1},B={x|0<x≤2},
∴A∩B={x|0<x≤1},
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.給出如下定義:對(duì)函數(shù)y=f(x),x∈D.若存在實(shí)常數(shù)C,對(duì)任意的x1∈D,存在唯一的x2∈D,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=C成立,則稱(chēng)函數(shù)y=f(x)為“和諧函數(shù)”,常數(shù)C為函數(shù)y=f(x)的“和諧數(shù)”,若函數(shù)g(x)=lnx,x∈[e2,e3]為“和諧函數(shù)”,則其可能的“和諧數(shù)”為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.一艘輪船從A出發(fā),沿南偏東70°的方向航行40海里后到達(dá)海島B,然后從B出發(fā),沿北偏東35°的方向航行了40$\sqrt{2}$海里到達(dá)海島C.如果下次航行直接從A出發(fā)到C,此船航行的方向和路程(海里)分別為( 。
A.北偏東80°,20($\sqrt{6}$+$\sqrt{2}$)B.北偏東65°,20($\sqrt{3}$+2)C.北偏東65°,20($\sqrt{6}$+$\sqrt{2}$)D.北偏東80°,20($\sqrt{3}$+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}x≤y+4\\ 2y≤x+4\\ 2x+y≥11\end{array}\right.$,則z=x-3y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù) f(x)=(x-a)n,其中n=6$\int_0^{\frac{π}{2}}{cosxdx,\frac{{{f^'}(0)}}{f(0)}}$=-3,則f(x)的展開(kāi)式的各項(xiàng)系數(shù)之和為( 。
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.命題“?x∈R,x2+2x+5>0”的否定是?x0∈R,x02+2x0+5≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知向量$\overrightarrow m$=(1,-2),$\overrightarrow n$=(1,1),且向量$\overrightarrow m$與$\overrightarrow m$+λ$\overrightarrow n$垂直,則λ=(  )
A.$\frac{5}{3}$B.-$\frac{5}{3}$C.5D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.等比數(shù)列的前n項(xiàng),前2n項(xiàng),前3n項(xiàng)的和分別為A,B,C,則( 。
A.B2=ACB.A+C=2BC.B(B-A)=A(C-A)D.B(B-A)=C(C-A)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.給出以下命題:
(1)直線(xiàn)l:y=k(x-3)與雙曲線(xiàn)$\frac{x^2}{4}$-$\frac{y^2}{5}$=1交于A,B兩點(diǎn),若|AB|=5,則這樣的直線(xiàn)有3條;
(2)已知空間任意一點(diǎn)O和不共線(xiàn)的三點(diǎn)A,B,C,若$\overrightarrow{OP}$=$\frac{1}{6}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{2}$$\overrightarrow{OC}$,則P,A,B,C四點(diǎn)共面;
(3)已知空間任意一點(diǎn)O和不共線(xiàn)的三點(diǎn)A,B,C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$+2$\overrightarrow{OC}$,則P,A,B,C四點(diǎn)一定不共面;
(4)直線(xiàn)θ=$\frac{π}{3}$(ρ∈R)與曲線(xiàn)ρ=$\frac{1}{1-2cosθ}$(ρ∈R)沒(méi)有公共點(diǎn).
其中,真命題的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案