若點P(x,y)在圓x2+y2+4x+3=0上,則
y
x
的取值范圍是( 。
A、[-
3
3
,0)
B、[-
3
3
,
3
3
]
C、(0,
3
3
]
D、(-∞,
3
3
]
考點:圓的一般方程
專題:直線與圓
分析:首先把圓的一般式轉(zhuǎn)化為標(biāo)準(zhǔn)式,進(jìn)一步利用圓心到直線的距離d≤r,然后利用解不等式求得結(jié)果.
解答:解:圓x2+y2+4x+3=0轉(zhuǎn)化為:(x+2)2+y2=1
圓心(-2,0),半徑為1.
設(shè)k=
y
x
,則:kx-y=0
利用圓心到直線的距離d≤1
則:
|-2k|
1+k2
≤1

解得:-
3
3
≤k≤
3
3

故選:B
點評:本題考查的知識要點:圓的一般是與標(biāo)準(zhǔn)式的互化,圓與直線的關(guān)系及相關(guān)的運(yùn)算問題.屬于基礎(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正數(shù)a,b滿足關(guān)系式:a5=a+1,b10=b+3a,則a與b的大小關(guān)系是( 。
A、a>b>1
B、b>a>1
C、a>1,0<b<1
D、0<a<1,b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述正確的是( 。
A、方程x2+2x+1=0的根構(gòu)成的集合為{-1,-1}
B、{x∈R|x2+2=0}={x∈R|
2x+1>0
x+3<0
}
C、集合M={(x,y)|x+y=5,xy=6}表示的集合是{2,3}
D、集合{1,3,5}與集合{3,5,1]是不同的集合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點P(
3
,1),圓C:x2+y2=4,則直線l與圓C的位置關(guān)系是(  )
A、相交B、相切
C、相交和相切D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個容量為n的樣本分成若干組,若某組的頻數(shù)和頻率分別是30和0.25,則n=( 。
A、120B、118
C、110D、100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
tanx
的定義域為( 。
A、{x|x≠0}
B、{x|x≠kπ,k∈Z}
C、{x|x≠kπ+
π
2
,k∈Z}
D、{x|x≠
2
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2-2y=0的半徑是( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)B、C是定點,且均不在平面α上,動點A在平面α上,且sin∠ABC=
1
2
,則點A的軌跡為( 。
A、圓或橢圓
B、拋物線或雙曲線
C、橢圓或雙曲線
D、以上均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
.
a
=(cosα,sinα),
.
b
=(sinβ,cosβ)且α+β=
π
6
,若向量
c
滿足|
.
c
-
.
a
-
.
b
|=2,則
|
a
|
|
c
|
最小值等于( 。
A、2-
3
B、3-
2
C、
2
-1
D、3+
2

查看答案和解析>>

同步練習(xí)冊答案