【題目】唐代詩(shī)人李欣的是古從軍行開(kāi)頭兩句說(shuō)百日登山望烽火,黃昏飲馬傍交河詩(shī)中隱含著一個(gè)有缺的數(shù)學(xué)故事將軍飲馬的問(wèn)題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回到軍營(yíng),怎樣走才能使總路程最短?在平面直角坐標(biāo)系中,設(shè)軍營(yíng)所在區(qū)域?yàn)?/span>,若將軍從出發(fā),河岸線所在直線方程,并假定將軍只要到達(dá)軍營(yíng)所在區(qū)域即回到軍營(yíng),則將軍飲馬的最短總路程為(

A.B.C.D.

【答案】B

【解析】

先求出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn),點(diǎn)到圓心的距離減去半徑即為最短.

設(shè)點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn),,

的中點(diǎn)為,故解得,,

要使從點(diǎn)A到軍營(yíng)總路程最短,即為點(diǎn)到軍營(yíng)最短的距離,

即為點(diǎn)和圓上的點(diǎn)連線的最小值,為點(diǎn)和圓心的距離減半徑,

將軍飲馬的最短總路程為,

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】M是正方體的棱的中點(diǎn),給出下列四個(gè)命題:①過(guò)M點(diǎn)有且只有一條直線與直線都相交;②過(guò)M點(diǎn)有且只有一條直線與直線都垂直;③過(guò)M點(diǎn)有且只有一個(gè)平面與直線都相交;④過(guò)M點(diǎn)有且只有一個(gè)平面與直線都平行;其中真命題是(

A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖如示的多面體中,平面平面,四邊形是邊長(zhǎng)為的正方形, ,.

1)若分別是中點(diǎn),求證: ∥平面

2)求此多面體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

討論函數(shù)的單調(diào)性;

設(shè)的兩個(gè)零點(diǎn)是, ,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是( )

A.若兩條直線互相平行,那么它們的斜率相等

B.方程能表示平面內(nèi)的任何直線

C.的圓心為,半徑為

D.若直線不經(jīng)過(guò)第二象限,則t的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】北京聯(lián)合張家口獲得2022年第24屆冬奧會(huì)舉辦權(quán),我國(guó)各地掀起了發(fā)展冰雪運(yùn)動(dòng)的熱潮,現(xiàn)對(duì)某高中的學(xué)生對(duì)于冰雪運(yùn)動(dòng)是否感興趣進(jìn)行調(diào)查,該高中男生人數(shù)是女生的1.2倍,按照分層抽樣的方法,從中抽取110人,調(diào)查高中生是否對(duì)冰雪運(yùn)動(dòng)感興趣得到如下列聯(lián)表:

感興趣

不感興趣

合計(jì)

男生

40

女生

30

合計(jì)

110

1)補(bǔ)充完成上述列聯(lián)表;

2)是否有99%的把握認(rèn)為是否喜愛(ài)冰雪運(yùn)動(dòng)與性別有關(guān).

附: (其中.

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線方程為,其中.

1)求證:直線恒過(guò)定點(diǎn);

2)當(dāng)變化時(shí),求點(diǎn)到直線的距離的最大值及此時(shí)的直線方程;

3)若直線分別與軸的負(fù)半軸交于兩點(diǎn),求面積的最小值及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E的右焦點(diǎn)為,離心率為,過(guò)作與x軸垂直的直線與橢圓交于P,Q點(diǎn),若|PQ|=

1)求橢圓E的方程;

2)設(shè)過(guò)的直線l的斜率存在且不為0,直線l交橢圓于A,B兩點(diǎn),若以AB為直徑的圓過(guò)橢圓左焦點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著支付寶、微信等支付方式的上線,越來(lái)越多的商業(yè)場(chǎng)景可以實(shí)現(xiàn)手機(jī)支付.為了解各年齡層的人使用手機(jī)支付的情況,隨機(jī)調(diào)查50次商業(yè)行為,并把調(diào)查結(jié)果制成下表:

年齡(歲)

[1525

[25,35

[35,45

[45,55

[55,65

[65,75

頻數(shù)

5

10

15

10

5

5

手機(jī)支付

4

6

10

6

2

0

(1)若從年齡在 [55,65)的被調(diào)查者中隨機(jī)選取2人進(jìn)行調(diào)查,記選中的2人中使用手機(jī)支付的人數(shù)為,求的分布列及數(shù)學(xué)期望;

(2)把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年,請(qǐng)根據(jù)上表完2×2列聯(lián)表,是否有以上的把握判斷使用手機(jī)支付與年齡(中青年、中老年)有關(guān)聯(lián)?

手機(jī)支付

未使用手機(jī)支付

總計(jì)

中青年

中老年

總計(jì)

可能用到的公式:

獨(dú)立性檢驗(yàn)臨界值表:

查看答案和解析>>

同步練習(xí)冊(cè)答案