等差數(shù)列{an}的前n項(xiàng)和是Sn,若Sp=Sq,(p、q∈N*,p≠q)則Sp+q=(  )
分析:設(shè)公差為d,由Sp=Sq,可推得a1+
p+q-1
2
•d
=0,再利用等差數(shù)列的求和公式可求得答案.
解答:解:設(shè)公差為d,
由Sp=Sq,得pa1+
p(p-1)
2
•d
=qa1+
q(q-1)
2
•d
,整理得(p-q)a1+
(p-q)(p+q-1)
2
•d
=0,
因?yàn)閜≠q,所以a1+
p+q-1
2
•d
=0,
則Sp+q=(p+q)a1+
(p+q)(p+q-1)
2
•d
=(p+q)(a1+
p+q-1
2
•d
)=(p+q)×0=0,
故選C.
點(diǎn)評(píng):本題考查等差數(shù)列前n項(xiàng)和公式,考查學(xué)生的運(yùn)算能力,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-a7<a1<-a8,則必定有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a2=6,S5=50,數(shù)列{bn}的前n項(xiàng)和Tn滿足Tn+
1
2
bn=1

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列{bn}為等比數(shù)列;
(Ⅲ)記cn=
1
4
anbn
,數(shù)列{cn}的前n項(xiàng)和為Rn,若Rn<λ對(duì)n∈N*恒成立,求λ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前2006項(xiàng)的和S2006=2008,其中所有的偶數(shù)項(xiàng)的和是2,則a1003的值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1;等比數(shù)列{bn}中,b1=1.若a3+S3=14,b2S2=12
(Ⅰ)求an與bn;
(Ⅱ)設(shè)cn=an+2bn(n∈N*),數(shù)列{cn}的前n項(xiàng)和為Tn.若對(duì)一切n∈N*不等式Tn≥λ恒成立,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,則a5+a6>0是S8≥S2的( 。
A、充分而不必要條件B、必要而不充分條件C、充分必要條件D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案