函數(shù)f(x)=2cos2
x
2
+1的最大值為
 
考點:三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:直接利用二倍角公式化簡函數(shù)的表達式,通過余弦函數(shù)的最值求解表達式的最值.
解答: 解:函數(shù)f(x)=2cos2
x
2
+1=cosx+2,
因為cosx≤1,所以函數(shù)f(x)=cosx+2≤3.
函數(shù)的最大值為3.
故答案為:3.
點評:本題考查二倍角公式的應(yīng)用,三角函數(shù)的最值的求法,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3-3x.
(1)求函數(shù)f(x)單調(diào)區(qū)間;
(2)若在區(qū)間[1,2]上,f(x)≥4恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x+2ax-1,其中a>0且a≠1.
(1)若a=
1
2
,請用定義證明f(x)在R上單調(diào)遞增;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上的最大值為14,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且過點P(
2
2
,
1
2
)
,記橢圓的左頂點為A.
(1)求橢圓的方程;
(2)設(shè)垂直于y軸的直線l交橢圓于B,C兩點,試求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg|x-1|+
1
x
的零點個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為1cm,過AC作平行于對角線BD1的截面,則截面面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+lnx
x
在點(1,f(1))處的切線與x軸平行.
(Ⅰ)求實數(shù)a的值及f(x)的極值;
(Ⅱ)是否存在區(qū)間(t,t+
2
3
)(t>0),使函數(shù)f(x)在此區(qū)間上存在極值和零點?若存在,求實數(shù)t的取值范圍,若不存在,請說明理由;
(Ⅲ)如果對任意的x1x2∈[e2,+∞),有|f(x1)-f(x2)|≥k|
1
x1
-
1
x2
|,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|+|x-2|.
①畫出函數(shù)y=f(x)的圖象;
②若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a、b∈R)恒成立,求實數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|3x-2>1},B={x|2m≤x≤m+3}
①當(dāng)m=-1時,求A∩B,A∪B;
②若B⊆A,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案