【題目】已知在中,,點(diǎn)在直線上,若的面積為10,求點(diǎn)的坐標(biāo).
【答案】(方法Ⅰ)解:設(shè)點(diǎn)C到直線AB的距離為d
由題意知:………………………………………2分
4分 |
4分 |
直線AB的方程為:,即……………………………6分
C點(diǎn)在直線3x-y+3=0上,設(shè)C
10分 |
10分 |
C點(diǎn)的坐標(biāo)為:或……………………………………………………12分
(方法Ⅱ)解:設(shè)點(diǎn)C到直線AB的距離為d
由題意知:………………………………………2分
4分 |
4分 |
直線AB的方程為:,即…………………………6分
設(shè)C點(diǎn)的坐標(biāo)為
由]
10分 |
10分 |
解得:或C點(diǎn)的坐標(biāo)為:或……………………………………………………12分
]
【解析】
分析:設(shè)點(diǎn)坐標(biāo)為,求出的距離,利用三角形的面積求出到的距離,利用點(diǎn)到直線的距離公式以及點(diǎn)在直線上,列出關(guān)于的方程組,可求出的坐標(biāo).
詳解:設(shè)點(diǎn)坐標(biāo)為,由題意,得
.
因?yàn)?/span>,所以.(為點(diǎn)到直線的距離)
直線的方程為,即.
由,
解得或.
所以點(diǎn)的坐標(biāo)為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題錯(cuò)誤的是( )
A.命題“若 ,則 ”的逆命題為“若 ,則 ”
B.對(duì)于命題 ,使得 ,則 ,則
C.“ ”是“ ”的充分不必要條件
D.若 為假命題,則 均為假命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 中,已知圓 ,點(diǎn) ,點(diǎn) ,以B為圓心, 為半徑作圓,交圓C于點(diǎn)P,且 的平分線交線段CP于點(diǎn)Q.
(1)當(dāng)a變化時(shí),點(diǎn)Q始終在某圓錐曲線 上運(yùn)動(dòng),求曲線 的方程;
(2)已知直線l過點(diǎn)C,且與曲線 交于M,N兩點(diǎn),記 面積為 , 面積為 ,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}前n項(xiàng)和為Sn,已知,且S1,S2,S4成等比數(shù)列,求{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 為等邊三角形,平面平面, , , , , 為的中點(diǎn).
()求證: .
()求二面角的余弦值.
()若平面,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從參加某次高中英語競(jìng)賽的學(xué)生中抽出100名,將其成績(jī)整理后,繪制頻率分布直方圖(如圖所示).其中樣本數(shù)據(jù)分組區(qū)間為: , , , , , .
(Ⅰ)試求圖中的值,并計(jì)算區(qū)間上的樣本數(shù)據(jù)的頻率和頻數(shù);
(Ⅱ)試估計(jì)這次英語競(jìng)賽成績(jī)的眾數(shù)、中位數(shù)及平均成績(jī)(結(jié)果精確到).
注:同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中, , , , , 、分別在、上, ,現(xiàn)將四邊形沿折起,使平面平面.
()若,是否存在折疊后的線段上存在一點(diǎn),且,使得平面?若存在,求出的值;若不存在,說明理由.
()求三棱錐的體積的最大值,并求此時(shí)點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為3的圓形(為圓心)鋁皮上截取一塊矩形材料,其中點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)矩形的邊長(zhǎng),圓柱的體積為.
(1)寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時(shí),才能使做出的圓柱形罐子體積最大?最大體積是多少?(圓柱體積公式: , 為圓柱的底面積, 為圓柱的高)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com