【題目】已知函數(shù)f(x)=x2+ +alnx(x>0,a為常數(shù)).
(1)討論函數(shù)g(x)=f(x)﹣x2的單調性;
(2)對任意兩個不相等的正數(shù)x1、x2 , 求證:當a≤0時,

【答案】
(1)解: ,∴

①當a≤0時,g'(x)<0,g(x)在(0,+∞)為減函數(shù);

②當a>0時, ,

時,g'(x)<0,g(x)為減函數(shù);

時,g'(x)>0,g(x)為增函數(shù).

∴當a>0時,g(x)在 上為減函數(shù),g(x)在 上為增函數(shù)


(2)解:證明:以x1為自變量,構造

,又

= ,

,∴

故當x∈(0,x2)時,t'(x)<0,t(x)為減函數(shù);

當x∈(x2,+∞)時,t'(x)>0,t(x)為增函數(shù).

故對一切x∈(0,+∞),t(x)≥t(x2)=0.當且僅當x=x2時取等號.

題中x1≠x2,故t(x1)>0恒成立.得證.


【解析】(1)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調區(qū)間即可;(2)構造 ,求出t(x)的導數(shù),解關于導函數(shù)的不等式,得到函數(shù)的單調區(qū)間,根據(jù)函數(shù)的單調性證明即可.
【考點精析】根據(jù)題目的已知條件,利用利用導數(shù)研究函數(shù)的單調性的相關知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設{an}是公比為q的等比數(shù)列.
(Ⅰ)試推導{an}的前n項和公式;
(Ⅱ) 設q≠1,證明數(shù)列{an+1}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=1,b4=6,且{an﹣bn}是等比數(shù)列. (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若n∈N* , 都有bn≤bk成立,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓W: (b>0)的一個焦點坐標為
(Ⅰ)求橢圓W的方程和離心率;
(Ⅱ)若橢圓W與y軸交于A,B兩點(A點在B點的上方),M是橢圓上異于A,B的任意一點,過點M作MN⊥y軸于N,E為線段MN的中點,直線AE與直線y=﹣1交于點C,G為線段BC的中點,O為坐標原點.求∠OEG的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE.若M為線段A1C的中點,則在△ADE翻折過程中: ①|BM|是定值;
②點M在某個球面上運動;
③存在某個位置,使DE⊥A1C;
④存在某個位置,使MB∥平面A1DE.
其中正確的命題是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π,若f(x)>1對x∈(﹣ , )恒成立,則φ的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=xln(x﹣1)﹣a(x﹣2). (Ⅰ)若a=2017,求曲線f(x)在x=2處的切線方程;
(Ⅱ)若當x≥2時,f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù) 在(0,2)上存在兩個極值點,則a的取值范圍是(
A.(﹣∞,﹣
B.(﹣∞,﹣
C.(﹣∞,﹣ )∪(﹣ ,﹣
D.(﹣e,﹣ )∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足an+2= ,n∈N*,且a1=1,a2=2.
(1)求數(shù)列{an}的通項公式;
(2)令bn=(﹣1)nanan+1 , n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案