下列說法中正確的是( 。
A、一個命題的逆命題為真,則它的逆否命題一定為真
B、“a>b”與“a+c>b+c”不等價
C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D、一個命題的否命題為真,則它的逆命題一定為真
考點:命題的真假判斷與應用
專題:推理和證明
分析:由四種命題的等價關系可判斷A,D;利用等價命題的定義,可判斷B;寫出原命題的逆否命題,可判斷C;
解答: 解:一個命題的逆命題為真,則它的否命題一定為真,一個命題為真,則它的逆否命題一定為真,但一個命題的逆命題為真,則它的逆否命題不一定為真,故A錯誤,D正確;
“a>b”?“a+c>b+c”,故B錯誤;
“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤;
故選:D
點評:本題考查的知識點是四種命題,等價命題,熟練掌握四種命題的等價關系和定義是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l交橢圓
x2
20
+
y2
16
=1于M、N兩點,橢圓與y軸的正半軸交于B點,若△MBN的重心恰好落在橢圓的右焦點上,則直線l方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,a=
5
,b=
15
,A=30°,求c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一次函數(shù)f(x)滿足f(f(f(x)))=2x-3,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosx•sin(x+
π
3
)-
3
cos2x+
3
4
,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在[-
π
4
π
4
]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
為單位向量,
b
=(3,4),|
a
-2
b
|=3,則
a
b
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)在定義域R上的導函數(shù)是f′(x),若f(x)=f(2-x),且當x∈(-∞,1)時,(x-1)f′(x)<0,設a=f(0)、b=f(1)、c=f(3),則( 。
A、a<b<c
B、a>b>c
C、c<a<b
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x+2y≥0
x-y≤0
0≤y≤3
,則目標函數(shù)z=x+y的最小值為(  )
A、-5B、-4C、-3D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3x2+1,若f(x)的值域為(2,4),求f(x)的定義域的可能范圍.

查看答案和解析>>

同步練習冊答案