【題目】已知方程

(1)求該方程表示一條直線的條件;

(2)當(dāng)為何實(shí)數(shù)時,方程表示的直線斜率不存在?求出這時的直線方程;

(3)已知方程表示的直線軸上的截距為-3,求實(shí)數(shù)的值;

(4)若方程表示的直線的傾斜角是45°,求實(shí)數(shù)的值.

【答案】(1);(2),;(3);(4).

【解析】

試題分析:(1)當(dāng)的系數(shù)不同時為零時,方程表示一條直線,分別令,解得時同時為零,故;2斜率不存在,即,解得;3依題意,有,解得4)依題意有,解得.

試題解析:

(1)當(dāng)的系數(shù)不同時為零時,方程表示一條直線,

,解得;

解得

所以方程表示一條直線的條件是

(2)由(1)易知,當(dāng)時,方程表示的直線的斜率不存在,

此時的方程為,它表示一條垂直于軸的直線.

(3)依題意,有,所以

所以,由(1)知所求

(4)因?yàn)橹本的傾斜角是45°,所以斜率為1,

故由,解得(舍去).

所以直線的傾斜角為45°時,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以為圓心的圓及其上一點(diǎn).

(1)是否存在直線與圓有兩個交點(diǎn),并且,若有,求此直線方程,若沒有,請說明理由;

(2)設(shè)點(diǎn)滿足:存在圓上的兩點(diǎn)使得,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求函數(shù)處的切線方程;

(2)令,求函數(shù)的極值;

(3)若,正實(shí)數(shù)滿足,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的各項(xiàng)均為正數(shù),且 .

(1)求數(shù)列的通項(xiàng)公式;

(2)若數(shù)列滿足: ,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地?cái)M建一座長為640米的大橋,假設(shè)橋墩等距離分布,經(jīng)設(shè)計(jì)部門測算,兩端橋墩造價(jià)總共為100萬元,當(dāng)相鄰兩個橋墩的距離為米時(其中).中間每個橋墩的平均造價(jià)為萬元,橋面每1米長的平均造價(jià)為萬元.

(1)試將橋的總造價(jià)表示為的函數(shù)

(2)為使橋的總造價(jià)最低,試問這座大橋中間(兩端橋墩除外)應(yīng)建多少個橋墩?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中)的圖象的兩條相鄰對稱軸之間的距離為,且圖象上一個最低點(diǎn)為.

(1)求函數(shù)的解析式;

(2)當(dāng)時,求函數(shù)的值域;

(3)若方程上有兩個不相等的實(shí)數(shù)根,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,證明: 為偶函數(shù);

(2)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)若,求實(shí)數(shù)的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),和平面內(nèi)一點(diǎn),過點(diǎn)任作直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,平面側(cè)面,且

(1)求證:

(2)若直線與平面所成角的大小為,求銳二面角的大小.

查看答案和解析>>

同步練習(xí)冊答案