已知
OA
=(1,1),
OB
=(1,a),其中O為坐標(biāo)原點(diǎn),若向量
OA
OB
的夾角在區(qū)間[0,
π
12
]內(nèi)變化,則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:運(yùn)用向量的數(shù)量積的定義和性質(zhì)及坐標(biāo)表示,結(jié)合余弦函數(shù)的單調(diào)性,求出cosθ的范圍,解不等式即可得到a的范圍.
解答: 解:由于
OA
=(1,1),
OB
=(1,a),
OA
OB
=1+a,|
OA
|=
2
,|
OB
|=
1+a2

由于向量
OA
OB
的夾角在區(qū)間[0,
π
12
],
則有cosθ∈[
6
+
2
4
,1].
由于cosθ=
OA
OB
|
OA
|•|
OB
|

即有
6
+
2
4
1+a
2
1+a2
≤1,
解得,
3
3
≤a≤
3

故答案為:
3
3
≤a≤
3
點(diǎn)評:本題考查平面向量的數(shù)量積的定義和坐標(biāo)表示,考查余弦函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,且a≠1,f(x)=
1
3x+
3

(1)求值:f(0)+f(1),f(-1)+f(2);
(2)由(1)的結(jié)果歸納概括對所有實(shí)數(shù)x都成立的一個等式,并加以證明;
(3)若n∈N*,求和:f(-99)+f(-98)+…+f(-1)+f(0)+f(1)+…+f(100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的標(biāo)準(zhǔn)方程x2+
y2
10
=1
,則橢圓的焦點(diǎn)坐標(biāo)為( 。
A、
10
,0)
B、(0,±
10
)
C、(0,±3)
D、(±3,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,其中正視圖和側(cè)(左)視圖是腰長為4的兩個全等的等腰直角三角形,則該幾何體的體積為( 。
A、16
B、64
C、
16
3
D、
64
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為O的圓內(nèi)有一條弦BC,其長為2,動點(diǎn)為A,在圓上運(yùn)動,且∠BAC=45°,若∠ABC為銳角,則
OA
BC
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x-4x
(1)判斷函數(shù)f(x)在[0,1]上的單調(diào)性并用定義證明.
(2)若方程f(x)-b=0在[-2,2]上有兩個不同的解,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的六個頂點(diǎn)都在球O的球面上,若AA1⊥平面A1B1C1,A1B1⊥B1C1,AA1=8,A1B1=6,A1C1=2
34
,則球O的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某飛機(jī)通過雷達(dá)發(fā)現(xiàn)在其下方500m空域,北偏東60°方位,距離3000m處有另一架飛機(jī)正在飛行.試用向量畫出兩架飛機(jī)的相對位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:0<a<4恒成立,q:ax2+ax+1>0恒成立,p是q的
 
條件.

查看答案和解析>>

同步練習(xí)冊答案