【題目】對于數(shù)列,稱(其中)為數(shù)列的前k項(xiàng)“波動(dòng)均值”.若對任意的,都有,則稱數(shù)列為“趨穩(wěn)數(shù)列”.
(1)若數(shù)列1,,2為“趨穩(wěn)數(shù)列”,求的取值范圍;
(2)若各項(xiàng)均為正數(shù)的等比數(shù)列的公比,求證:是“趨穩(wěn)數(shù)列”;
(3)已知數(shù)列的首項(xiàng)為1,各項(xiàng)均為整數(shù),前項(xiàng)的和為. 且對任意,都有, 試計(jì)算: ().
【答案】(1)(2)證明見解析,(3)
【解析】
(1)由新定義可得,解不等式可得的范圍;(2)運(yùn)用等比數(shù)列的通項(xiàng)公式和求和公式,結(jié)合新定義,運(yùn)用不等式的性質(zhì)即可得證;(3)由任意,,都有,可得,由等比數(shù)列的通項(xiàng)公式,可得,結(jié)合新定義和二項(xiàng)式定理,化簡整理即可得到所求值.
(1)由題意,即,
解得 ,
(2)由已知,設(shè),因且,故對任意的,都有,
∴ ,
因∴
∴,,,,,
∴,
∴
∴
∴
即對任意的,都有,故是“趨穩(wěn)數(shù)列”,
(3) 當(dāng)時(shí),
當(dāng)時(shí),
∴
同理,,
因
∴
即 ,
所以 或
所以 或
因?yàn)?/span>,且,所以, 從而,
所以
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐S-ABCD的底面為正方形,,AC與BD交于E,M,N分別為SD,SA的中點(diǎn),.
(1)求證:平面平面SBD;
(2)求直線BD與平面CMN所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)單調(diào)函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,如果單調(diào)函數(shù)使得函數(shù)的值域也是,則稱函數(shù)是函數(shù)的一個(gè)“保值域函數(shù)”.已知定義域?yàn)?/span>的函數(shù),函數(shù)與互為反函數(shù),且是的一個(gè)“保值域函數(shù)”,是的一個(gè)“保值域函數(shù)”,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),且(其中e是自然對數(shù)的底數(shù)).
(Ⅰ)若,求的單調(diào)區(qū)間;
(Ⅱ)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,、分別是棱、的中點(diǎn),、分別是線段與上的點(diǎn),則與平面平行的直線有( )
A.0條B.1條C.2條D.無數(shù)條
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現(xiàn)象出現(xiàn)增多.陡然降溫幅度大于容易引起幼兒傷風(fēng)感冒疾病.為了解傷風(fēng)感冒疾病是否與性別有關(guān),在某婦幼保健院隨機(jī)對人院的名幼兒進(jìn)行調(diào)查,得到了如下的列聯(lián)表,若在全部名幼兒中隨機(jī)抽取人,抽到患傷風(fēng)感冒疾病的幼兒的概率為,
(1)請將下面的列聯(lián)表補(bǔ)充完整;
患傷風(fēng)感冒疾病 | 不患傷風(fēng)感冒疾病 | 合計(jì) | |
男 | 25 | ||
女 | 20 | ||
合計(jì) | 100 |
(2)能否在犯錯(cuò)誤的概率不超過的情況下認(rèn)為患傷風(fēng)感冒疾病與性別有關(guān)?說明你的理由;
(3)已知在患傷風(fēng)感冒疾病的名女性幼兒中,有名又患黃痘病.現(xiàn)在從患傷風(fēng)感冒疾病的名女性中,選出名進(jìn)行其他方面的排查,記選出患黃痘病的女性人數(shù)為,求的分布列以及數(shù)學(xué)期望.下面的臨界值表供參考:
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
(1)設(shè),判斷在上是否為有界函數(shù),若是,請說明理由,并寫出的所有上界的集合;若不是,也請說明理由;
(2)若函數(shù)在上是以為上界的有界函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在2019年女排世界杯中,中國女子排球隊(duì)以11連勝的優(yōu)異戰(zhàn)績成功奪冠,為祖國母親七十華誕獻(xiàn)上了一份厚禮.排球比賽采用5局3勝制,前4局比賽采用25分制,每個(gè)隊(duì)只有贏得至少25分,并同時(shí)超過對方2分時(shí),才勝1局;在決勝局(第五局)采用15分制,每個(gè)隊(duì)只有贏得至少15分,并領(lǐng)先對方2分為勝.在每局比賽中,發(fā)球方贏得此球后可得1分,并獲得下一球的發(fā)球權(quán),否則交換發(fā)球權(quán),并且對方得1分.現(xiàn)有甲乙兩隊(duì)進(jìn)行排球比賽:
(1)若前三局比賽中甲已經(jīng)贏兩局,乙贏一局.接下來兩隊(duì)贏得每局比賽的概率均為,求甲隊(duì)最后贏得整場比賽的概率;
(2)若前四局比賽中甲、乙兩隊(duì)已經(jīng)各贏兩局比賽.在決勝局(第五局)中,兩隊(duì)當(dāng)前的得分為甲、乙各14分,且甲已獲得下一發(fā)球權(quán).若甲發(fā)球時(shí)甲贏1分的概率為,乙發(fā)球時(shí)甲贏1分的概率為,得分者獲得下一個(gè)球的發(fā)球權(quán).設(shè)兩隊(duì)打了個(gè)球后甲贏得整場比賽,求x的取值及相應(yīng)的概率p(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)不相等的非零向量,兩組向量和均由2個(gè)和3個(gè)排列而成,記,表示所有可能取值中的最小值,則下列命題中
(1)有5個(gè)不同的值;(2)若則與無關(guān);(3)若,則與無關(guān);(4)若,則;(5)若,,則與的夾角為.正確的是( )
A.(1)(2)B.(2)(4)C.(3)(5)D.(1)(4)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com