18.已知(x1,y1),(x2,y2)是方程組$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$的兩組解,求(x1-x22+(y1-y22的最大值.

分析 由方程組$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,得:3x2+4my+2m2-4=0,由此利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式能求出(x1-x22+(y1-y22的最大值.

解答 解:方程組$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,消去y,整理,得:3x2+4my+2m2-4=0,
∵(x1,y1),(x2,y2)是方程組$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\end{array}\right.$的兩組解,
∴△=16m2-4×3×(2m2-4)>0,解得-$\sqrt{6}<m<\sqrt{6}$,
${x}_{1}+{x}_{2}=-\frac{4m}{3}$,x1x2=$\frac{2{m}^{2}-4}{3}$,
∴(x1-x22+(y1-y22=(1+12)[(x1+x22-4x1x2]
=2($\frac{16{m}^{2}}{9}$-$\frac{8{m}^{2}-16}{3}$)
=$\frac{96-16{m}^{2}}{9}$,
∴當(dāng)m=0時(shí),(x1-x22+(y1-y22取最大值$\frac{32}{3}$.

點(diǎn)評(píng) 本題考查兩點(diǎn)間距離的平方的最大值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、弦長(zhǎng)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=30,S10=110,則S15=( 。
A.140B.190C.240D.260

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.分別拋擲2枚質(zhì)地均勻的硬幣,設(shè)A是事件“第一枚為正面”,B是事件“第二枚為正面”,C是事件“2枚結(jié)果相同”.則事件A與B,事件B與C,事件A與C中相互獨(dú)立的有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)化簡(jiǎn)Sn=1+2a+3a2+4a3+…+nan-1,a≠0,n∈N*;
(2)已知等比數(shù)列{an}中,a1=3,a4=81,若數(shù)列{bn}滿足bn=log3an,則數(shù)列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知n為正整數(shù),在(1+x)2n與(1+2x3n展開(kāi)式中x3項(xiàng)的系數(shù)相同,求:
(1)n的值.
(2)(1+2x3n展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知數(shù)列{an}的首項(xiàng)a1=3,an+1=3nan,則通項(xiàng)公式an=${3}^{\frac{(n-1)n}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知復(fù)數(shù)z滿足z•(i-i2)=1+i3,其中i為虛數(shù)單位,則z=-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.曲線f(x)=x+lnx在x=1處的切線方程是( 。
A.y=x-1B.y=x-2C.y=2x-1D.y=2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)F(1,0),離心率為$\frac{{\sqrt{2}}}{2}$,過(guò)F作兩條互相垂直的弦AB,CD,設(shè)AB,CD的中點(diǎn)分別為M,N.
(1)求橢圓的方程;
(2)證明:直線MN必過(guò)定點(diǎn),并求出此定點(diǎn)坐標(biāo);
(3)若弦AB,CD的斜率均存在,求△FMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案