函數(shù)y=2sin(
π
3
-x)-cos(
π
6
+x)(x∈R)
的最小值等于( 。
A、-3
B、-2
C、-
5
D、-1
分析:把函數(shù)中的sin(
π
3
-x)變形為sin[
π
2
-(
π
6
+x)]后利用誘導(dǎo)公式化簡(jiǎn)后,合并得到一個(gè)角的余弦函數(shù),利用余弦函數(shù)的值域求出最小值即可.
解答:解:∵cos(
π
6
+x)≥-1,
∴y=2sin(
π
3
-x)-cos(
π
6
+x)=2sin[
π
2
-(
π
6
+x)]-cos(
π
6
+x)=2cos(
π
6
+x)-cos(
π
6
+x)=cos(
π
6
+x)≥-1
所以函數(shù)的最小值為-1
故選D
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,會(huì)根據(jù)余弦函數(shù)的值域求函數(shù)的最值,是一道綜合題.
做題時(shí)注意應(yīng)用(
π
3
-x)+(
π
6
+x)=
π
2
這個(gè)角度變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,點(diǎn)P是函數(shù)y=2sin(ωx+φ)(x∈R,ω>0)圖象的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),若
PM
PN
=0,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x-
π
6
)
的圖象(  )
A、關(guān)于原點(diǎn)成中心對(duì)稱
B、關(guān)于y軸成軸對(duì)稱
C、關(guān)于(
π
12
,0)
成中心對(duì)稱
D、關(guān)于直線x=
π
12
成軸對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-2sin(2x+
π3
)
取得最大值時(shí)所對(duì)應(yīng)x的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對(duì)稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對(duì)稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個(gè)命題中正確的有
 
(填寫正確命題前面的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)y=2sin3x的圖象向右平移
π
6
個(gè)單位后得到函數(shù)y=2sin(x-
π
6
)
的圖象;q:函數(shù)y=sin2x+2sinx-1的最大值為1.則下列命題中真命題為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案