給出下列五個命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個命題中正確的有
 
(填寫正確命題前面的序號)
分析:把x=
12
代入函數(shù)得  y=1,為最大值,故①正確.
由正切函數(shù)的圖象特征可得(
π
2
,0)是函數(shù)y=tanx的圖象的對稱中心,故②正確.
通過舉反例可得③是不正確的.
sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則有 2x1-
π
4
=2kπ+2x2-
π
4
,或 2x1-
π
4
=2kπ+π-(2x2-
π
4
),k∈z,
即 x1-x2=kπ,或x1+x2=kπ+
4
,故④不正確.
解答:解:把x=
12
代入函數(shù)得  y=1,為最大值,故①正確.
結(jié)合函數(shù)y=tanx的圖象可得點(
π
2
,0)是函數(shù)y=tanx的圖象的一個對稱中心,故②正確.
③正弦函數(shù)在第一象限為增函數(shù),不正確,如390°>60°,都是第一象限角,但sin390°<sin60°.
sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則有  2x1-
π
4
=2kπ+2x2-
π
4
,或 2x1-
π
4
=2kπ+π-(2x2-
π
4
),k∈z,
∴x1-x2=kπ,或x1+x2=kπ+
4
,k∈z,故④不正確.
故答案為①②.
點評:本題考查正弦函數(shù)的單調(diào)性、奇偶性、周期性、對稱性,掌握正弦函數(shù)的圖象和性質(zhì),是解題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①在三角形ABC中,若A>B則sinA>sinB;
②若數(shù)列{bn}的前n項和Sn=n2+2n+1.則數(shù)列{bn}從第二項起成等差數(shù)列;
③已知Sn是等差數(shù)列{an}的前n項和,若S7>S8則S9>S8
④已知等差數(shù)列{an}的前n項和為Sn,若a5=5a3
S9S5
=9;
⑤若{an}是等比數(shù)列,且Sn=3n+1+r,則r=-1;
其中正確命題的序號為:
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:
①若4a=3,log45=b,則log4
95
=a2-b

②函數(shù)f(x)=0.51+2x-x2的單調(diào)遞減區(qū)間是[1,+∞);
③m≥-1,則函數(shù)y=lg(x2-2x-m)的值域為R;
④若映射f:A→B為單調(diào)函數(shù),則對于任意b∈B,它至多有一個原象;
⑤函數(shù)y=ex的圖象與函數(shù)y=f(x)的圖象關(guān)于直線y=x對稱,則f(e3)=3.
其中正確的命題是
③④⑤
③④⑤
(把你認(rèn)為正確的命題序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:其中正確的命題有
②③⑤
②③⑤
(填序號).
①若
a
b
=0,則一定有
a
b
;  ②?x,y∈R,sin(x-y)=sinx-siny;
③?a∈(0,1)∪(1,+∞),函數(shù)f(x)=a1-2x+1都恒過定點(
1
2
,2)
;
④方程x2+y2+Dx+Ey+F=0表示圓的充要條件是D2+E2-4F≥0;
⑤若存在有序?qū)崝?shù)對(x,y),使得
OP
=x
OA
+y
OB
,則O,P,A,B四點共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海模擬)已知f(x)在x∈[a,b]上的最大值為M,最小值為m,給出下列五個命題:
①若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,m];
②若對任何x∈[a,b]都有p≤f(x),則p的取值范圍是(-∞,M];
③若關(guān)于x的方程p=f(x)在區(qū)間[a,b]上有解,則p的取值范圍是[m,M];
④若關(guān)于x的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,m];
⑤若關(guān)于x的不等式p≤f(x)在區(qū)間[a,b]上有解,則p的取值范圍是(-∞,M];
其中正確命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個命題:其中正確的命題有
②③④
②③④
(填序號).
①函數(shù)y=sinx(x∈[-π,π])的圖象與x軸圍成的圖形的面積S=
π
sinxdx
;
C
r+1
n+1
=
C
r+1
n
+
C
r
n

③在(a+b)n的展開式中,奇數(shù)項的二項式系數(shù)之和等于偶數(shù)項的二項式系數(shù)之和;
④i+i2+i3+…i2012=0;
⑤用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
13
24
,(n≥2,n∈N*)
的過程中,由假設(shè)n=k成立推到n=k+1成立時,只需證明
1
k+1
+
1
k+2
+
1
k+3
+…+
1
2k
+
1
2k+1
+
1
2(k+1)
13
24
即可.

查看答案和解析>>

同步練習(xí)冊答案