14.已知函數(shù)f(x)=-x2+ax(a∈R).
(1)當(dāng)a=3時(shí),求函數(shù)f(x)在$[{\frac{1}{2},2}]$上的最大值和最小值;
(2)當(dāng)函數(shù)f(x)在$({\frac{1}{2},2})$單調(diào)時(shí),求a的取值范圍.

分析 (1)將a=3代入f(x)的表達(dá)式,求出函數(shù)的單調(diào)性,從而求出函數(shù)的最大值和最小值即可;
(2)求出函數(shù)的對(duì)稱軸,根據(jù)函數(shù)的單調(diào)性得到關(guān)于a的不等式,解出即可.

解答 解:(1)a=3時(shí),f(x)=-x2+3x=-${(x-\frac{3}{2})}^{2}+\frac{9}{4}$,
對(duì)稱軸x=$\frac{3}{2}$,函數(shù)在[$\frac{1}{2}$,$\frac{3}{2}$)遞增,在($\frac{3}{2}$,2]遞減,
∴函數(shù)的最大值是f($\frac{3}{2}$)=$\frac{9}{4}$,函數(shù)的最小值是f($\frac{1}{2}$)=$\frac{5}{4}$;
(2)函數(shù)的對(duì)稱軸x=$\frac{a}{2}$,
若函數(shù)f(x)在$({\frac{1}{2},2})$單調(diào),
則$\frac{a}{2}$≤$\frac{1}{2}$或$\frac{a}{2}$≥2,解得:a≤1或a≥4.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知非零向量$\overrightarrow{{e}_{1}}$,$\overline{{e}_{2}}$不共線.
(1)如果$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=2$\overrightarrow{{e}_{1}}$+8$\overline{{e}_{2}}$,$\overline{CD}$=3($\overrightarrow{{e}_{1}}$-$\overline{{e}_{2}}$),求證:A、B、D三點(diǎn)共線;
(2)已知$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+$\overline{{e}_{2}}$,$\overrightarrow{BC}$=-λ$\overrightarrow{{e}_{1}}$-8$\overline{{e}_{2}}$,$\overline{CD}$=3$\overrightarrow{{e}_{1}}$-3$\overline{{e}_{2}}$,若A、B、D三點(diǎn)在同一條直線上,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{3}+{y^2}=1$和直線l:x+y-4=0,求橢圓上的點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.e為自然對(duì)數(shù)的底數(shù),定義函數(shù)shx=$\frac{{e}^{x}-{e}^{-x}}{2}$,chx=$\frac{{e}^{x}+{e}^{-x}}{2}$,若已知函數(shù)f(x)為奇函數(shù),且滿足f(1)=ch1,當(dāng)x>0時(shí),f(x)+xf′(x)>shx,則f(x)<$\frac{chx}{x}$的解集為( 。
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若函數(shù)f(x)=x2-3x+4在x∈[-1,3]上的最大值和最小值分別為a,b,則a+b=$\frac{39}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列程序執(zhí)行后輸出的結(jié)果是( 。
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=$\sqrt{4-x}$+lg(x-1)的定義域?yàn)椋?,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.己知函數(shù)f(x)=x3+ax+$\frac{1}{4}$,g(x)=-lnx用min{m,n}表示m,n中的最小值,設(shè)函數(shù)h(x)=min﹛(f(x),g(x)} (x>0),則當(dāng)-$\frac{5}{4}$<a<-$\frac{3}{4}$時(shí),h(x)的零點(diǎn)個(gè)數(shù)有(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.用數(shù)學(xué)歸納法證明1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,從n=k到n=k+1,等號(hào)左邊需增加的代數(shù)式為(k+1)(3k+4).

查看答案和解析>>

同步練習(xí)冊(cè)答案