精英家教網 > 高中數學 > 題目詳情
已知空間三條直線異面,且異面,則( 。
A.異面.B.相交.
C.平行.D.異面、相交、平行均有可能.
D

試題分析:三條直線可從正方體的12條棱里選取滿足已知的位置,觀察可得異面、相交、平行均有可能
點評:空間想象力的考查
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)在四棱錐中,平面,,,
.
(Ⅰ)證明;
(Ⅱ)求二面角的正弦值;
(Ⅲ)設為棱上的點,滿足異面直線所成的角為,求的長.
 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分13分)
在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E的棱AB上移動。
(I)證明:D1EA1D;
(II)AE等于何值時,二面角D1-EC-D的大小為。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在直三棱柱中,,分別是棱上的點(點 不同于點),且的中點.

求證:(1)平面平面;
(2)直線平面

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(14分)如右圖,簡單組合體ABCDPE,其底面ABCD為邊長為的正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC=.

(1)若N為線段PB的中點,求證:EN//平面ABCD;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側棱底面,,的中點,作于點

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

下列命題中,錯誤的命題是(   )
A.平行于同一直線的兩個平面平行。
B.一條直線與兩個平行平面中的一個相交,那么這條直線必和另一個平面相交。
C.平行于同一平面的兩個平面平行。
D.一條直線與兩個平行平面所成的角相等。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知正四棱錐的側棱長與底面邊長都相等,的中點,則所成的角的余弦值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

如果一條直線垂直于一個平面內的①三角形的兩邊;②梯形的兩邊;③圓的兩條直徑;④正六邊形的兩條邊,則能保證該直線與平面垂直的是(  )
A.①③    B.②C.②④D.①②④

查看答案和解析>>

同步練習冊答案