(本題滿分13分)
在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E的棱AB上移動(dòng)。
(I)證明:D1EA1D;
(II)AE等于何值時(shí),二面角D1-EC-D的大小為。
(Ⅰ)見(jiàn)解析;(Ⅱ)二面角的大小為.

試題分析:(1)欲證DE⊥平面A1E,根據(jù)線面垂直的判定定理可知只需證AE⊥DE,A1A⊥DE,即可;
解:以為坐標(biāo)原點(diǎn),直線分別為軸,建立空間直角坐標(biāo)系,設(shè),則 (2分)
(Ⅰ) (4分)
(Ⅱ)設(shè)平面的法向量,

 令,
 (8分)
依題意
(不合,舍去), .
時(shí),二面角的大小為. (13分)
點(diǎn)評(píng):解決該試題的關(guān)鍵是能利用向量的知識(shí)來(lái)表示空間的點(diǎn),然后借助向量在幾何中的運(yùn)用,求證垂直和二面角的平面角的問(wèn)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐中,⊥底面,底面為梯形,,,,點(diǎn)在棱上,且

(1)求證:平面⊥平面
(2)求平面和平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(20) (本題滿分14分) 已知正四棱錐P-ABCD中,底面是邊長(zhǎng)為2 的正方形,高為.M為線段PC的中點(diǎn).

(Ⅰ) 求證:PA∥平面MDB;
(Ⅱ) N為AP的中點(diǎn),求CN與平面MBD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,四棱錐P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD為直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,點(diǎn)E在棱PA上,且PE=2EA。
(1)求直線PC與平面PAD所成角的余弦值;(6分)
(2)求證:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知空間三條直線異面,且異面,則( 。
A.異面.B.相交.
C.平行.D.異面、相交、平行均有可能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是不同的直線,是不同的平面,有以下四個(gè)命題:
 ②  ③  ④
其中正確的個(gè)數(shù)(     )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線和平面,且的位置關(guān)系是              .(用符號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,且
,,(Ⅰ)平面與平面是否垂直?并說(shuō)明理由;(Ⅱ)求直線與平面所成角的正弦值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方體中,點(diǎn)的中點(diǎn).
(1) 求所成的角的余弦值;
(2) 求直線與平面所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案